【題目】如圖1,已知AB⊥CD,C是AB上一動(dòng)點(diǎn),AB=CD
(1)在圖1中,將BD繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)90°到BE,若連接DE,則△DBE為等腰直角三角形;若連接AE,試判斷AE與BC的數(shù)量和位置關(guān)系并證明;
(2)如圖2,F是CD延長(zhǎng)線上一點(diǎn),且DF=BC,直線AF,BD相交于點(diǎn)G,∠AGB的度數(shù)是一個(gè)固定值嗎?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說明理由.
【答案】(1)AE=BC,AE⊥BC,證明見解析;(2)∠AGB的度數(shù)是固定值,度數(shù)為45°.
【解析】
(1)結(jié)論:AE=BC,AE⊥BC.根據(jù)角的和差關(guān)系可得∠ABE=∠BDC,利用SAS證明△ABE≌△BDC,再利用全等三角形的性質(zhì)得出AE=BC,∠BAE=∠BCD=90°,即可解決問題;
(2)如圖,作AE⊥AB于A,使AE=BC,連結(jié)DE,BE.利用SAS可證明△ABE≌△BDC,再利用全等三角形的性質(zhì)得出BE=BD,∠EBD=90°,可得出∠EDB=∠AGB=45°.即可得答案.
(1)結(jié)論:AE=BC,AE⊥BC.理由如下:
∵AB⊥CD,將BD繞點(diǎn)B逆時(shí)針方向旋轉(zhuǎn)90°到BE,
∴∠BCD=∠EBD=90°,
∴∠ABE+∠DBC=90°,∠DBC+∠BDC=90°,
∴∠ABE=∠BDC,
在△ABE和△CDB中,,
∴△ABE≌△CDB(SAS),
∴AE=BC,∠BAE=∠BCD=90°,
∴AE⊥BC,
∴AE與BC的數(shù)量和位置關(guān)系是AE=BC,AE⊥BC.
(2)∠AGB的度數(shù)是固定值,∠AGB=45°.理由如下:
如圖,作AE⊥AB于A,使AE=BC,連結(jié)DE,BE.
∵AE⊥AB,∠BCD=90°,
∴∠BAE=∠BCD=90°,
在Rt△BAE和Rt△DCB中,,
∴△BAE≌△DCB(SAS),
∴BE=BD,∠ABE=∠BDC,
∵∠BDC+∠DBC=90°,
∴∠ABE+∠DBC=90°,
∴∠EBD=90°,
∴△BED是等腰直角三角形,
∴∠EDB=45°
∵∠BAE=∠ACD=90°,
∴AE∥DF,
∵AE=BC,BC=DF,
∴AE=DF,
∴四邊形AFDE是平行四邊形,
∴AF∥DE
∴∠AGB=∠EDB=45°.
∴∠AGB的度數(shù)是固定值,∠AGB=45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D是邊AC上一點(diǎn),BC=BD=AD,則∠A的大小是( 。
A. 36° B. 54° C. 72° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以A,B為圓心,以大于AB的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)EF;②作直線EF交BC于點(diǎn)D連接AD.若AD=AC,∠C=40°,則∠BAC的度數(shù)是( )
A.105°B.110°C.I15°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為矩形ABCD的對(duì)稱中心,AB=4cm,BC=6cm,點(diǎn)E、F、G 分別從A、B、C三點(diǎn)同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向勻速運(yùn)動(dòng),點(diǎn)E的運(yùn)動(dòng)速度為1cm/s,點(diǎn)G的運(yùn)動(dòng)速度為2cm/s,當(dāng)點(diǎn)F到達(dá)點(diǎn)C(即點(diǎn)F與點(diǎn)C重合)時(shí),三個(gè)點(diǎn)隨之停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,△EBF關(guān)于直線EF的對(duì)稱圖形是△EB′F.設(shè)點(diǎn)E、F、G運(yùn)動(dòng)的時(shí)間為t(單位:s).
(1)若點(diǎn)F的運(yùn)動(dòng)速度為2 cm/s.
①當(dāng)t=______s時(shí),四邊形EBFB′為正方形;
②若以點(diǎn)E、B、F為頂點(diǎn)的三角形與以點(diǎn)F,C,G為頂點(diǎn)的三角形相似,求t的值;
(2)若存在實(shí)數(shù)t,使得點(diǎn)B′與點(diǎn)O重合,求出t的值;并求出點(diǎn)F的運(yùn)動(dòng)速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,5),C(4,2)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)
(1)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A1,請(qǐng)畫出△A1B1C1;
(2)作出△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A2B2C2,并直接寫出A2,B2,C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b分別交x軸、y軸于A(1,0)、B(0,﹣1),交雙曲線y=于點(diǎn)C、D.
(1)求k、b的值;
(2)寫出不等式kx+b>的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓O的直徑AC=2,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時(shí),BD的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,梯形AOBC的頂點(diǎn)A,C在反比例函數(shù)圖象上,OA∥BC,上底邊OA在直線y=x上,下底邊BC交y軸于B(0,﹣4),則四邊形AOBC的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的直徑CD=10cm,AB是⊙O的弦,AB⊥CD,垂足為M,且AB=8cm,則AC的長(zhǎng)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com