【題目】如圖1,和都是邊長為1的等邊三角形.
四邊形ABCD是菱形嗎?為什么?
如圖2,將沿射線BD方向平移到的位置,則四邊形是平行四邊形嗎?為什么?
在移動過程中,四邊形有可能是矩形嗎?如果是,請求出點B移動的距離寫出過程;如果不是,請說明理由圖3供操作時使用.
科目:初中數學 來源: 題型:
【題目】平面鏡反射光線的規(guī)律:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.如圖①,一束光線m射到平面鏡a上,被a反射后的光線為n,則入射光線m、反射光線n與平面鏡a所夾的銳角相等,即∠1=∠2.
如圖②所示,AB,CD為兩面平面鏡,經過兩次反射后,入射光線m與反射光線n之間的位置關系會隨之改變,請你計算:圖②中,當兩平面鏡AB,CD的夾角∠ABC是多少度時,可以使入射光線m與反射光線n平行但方向相反.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明一家利用國慶八天駕車到某景點旅游,小汽車出發(fā)前油箱有油35L,行駛若干小時后,途中在加油站加油若干升,油箱中余油量Q(L)與行駛時間t(h)之間的關系如圖所示,根據圖像回答下列問題:
(1)小汽車行駛______h后加油,中途加油_______L
(2)求加油前油箱余油量Q與行駛時間t的函數關系式
(3)如果小汽車在行駛過程中耗油量速度不變,加油站距景點200km,車速80km/h,要到達目的地,油箱中的油是否夠用?請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+4與x軸交于A(﹣2,0)、B(4、0)兩點,與y軸交于C點.
(1)求拋物線的解析式;
(2)T是拋物線對稱軸上的一點,且△ATC是以AC為底的等腰三角形,求點T的坐標;
(3)M、Q兩點分別從A、B點以每秒1個單位長度的速度沿x軸同時出發(fā)相向而行,當點M到原點時,點Q立刻掉頭并以每秒 個單位長度的速度向點B方向移動,當點M到達拋物線的對稱軸時,兩點停止運動,過點M的直線l⊥x軸交AC或BC于點P.求點M的運動時間t與△APQ面積S的函數關系式,并求出S的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,P(a,b)是△ABC的邊AC上一點,△ABC經平移得到△A1B1C1,且點P的對應點為P1(a+5,b+4).
(1)寫出△ABC的三個頂點的坐標;
(2)請在平面直角坐標系中畫出△A1B1C1.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校數學興趣小組成員劉明對本班上學期期末考試數學成績(成績取整數,滿分為100分)作了統(tǒng)計分析(每個人的成績各不相同),繪制成如下下頻數分布表和頻數分布直方圖,請你根據圖表提供的信息,解答下列問題:
(1)頻數、頻率分布表中a= ,b= ,c= ;
(2)補全頻數分布直方圖;
(3)如果要畫該班上學期期末考試數學成績的扇形統(tǒng)計圖,那么分數在69.5﹣79.5之間的扇形圓心角的度數是 ;
(4)張亮同學成績?yōu)?/span>79分,他說:“我們班上比我成績高的人還有,我要繼續(xù)努力.”他的說法正確嗎?請說明理由.
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數 | 2 | 8 | 20 | a | 4 | c |
頻率 | 0.04 | b | 0.40 | 0.32 | 0.08 | 1 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】以矩形ABCD的兩條對稱軸為坐標軸,點A的坐標為(2,1),一張透明紙上畫有一個點和一條拋物線,平移透明紙,使這個點與點A重合,此時拋物線的函數表達式為y=x2 , 再次平移透明紙,使這個點與點C重合,則該拋物線的函數表達式變?yōu)椋?)
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com