【題目】周末,小明與小亮兩個(gè)人打算騎共享單車騎行出游,兩人打開手機(jī)APP進(jìn)行選擇,已知附近共有3種品牌的5輛車,其中A品牌與B品牌各有2輛,C品牌有1輛,手機(jī)上無法識別品牌,且有人選中車后其他人無法再選.

1)若小明首先選擇,則小明選中A品牌單車的概率為    ;

2)求小明和小亮選中同一品牌單車的概率.(請用畫樹狀圖列表的方法給出分析過程)

【答案】1;(2

【解析】

1)直接用概率公式即可;

2)先列出所有的等可能的結(jié)果,注意兩人不可選擇同一輛車,再找出兩人選擇同一品牌所占的結(jié)果數(shù),最后用概率公式即可.

解:(1)若小明首先選擇,則等可能的結(jié)果數(shù)有5種,其中選中A品牌單車的結(jié)果數(shù)為2種,故小明選中A品牌單車的概率為;

故答案為:.

2)列表如下:

A1

A2

B1

B2

C

A1

A2,A1

B1,A1

B2,A1

C,A1

A2

A1,A2

B1,A2

B2,A2

C,A2

B1

A1,B1

A2,B1

B2,B1

C,B1

B2

A1,B2

A2,B2

B1,B2

C,B2

C

A1,C

A2,C

B1,C

B2,C

小明和小亮選則共有20種等可能的結(jié)果數(shù),選中同一品牌單車有4種,故小明和小亮選中同一品牌單車的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生一分鐘跳繩情況,從這兩個(gè)年級隨機(jī)抽取名學(xué)生進(jìn)行測試,并對測試成績(一分鐘跳繩次數(shù))進(jìn)行整理、描述和分析,下面給出了部分信息:

七年級學(xué)生一分鐘跳繩成績頻數(shù)分布直方圖

七、八年級學(xué)生一分鐘跳繩成績分析表

七年級學(xué)生一分鐘跳繩成績(數(shù)據(jù)分組:)在這一組的是:

根據(jù)以上信息,回答下列問題:

表中   ;

在這次測試中,七年級甲同學(xué)的成績次,八年級乙同學(xué)的成績,他們的測試成績,在各自年級所抽取的名同學(xué)中,排名更靠前的是   (填),理由是   

該校七年級共有名學(xué)生,估計(jì)一分鐘跳繩不低于次的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列方程中,沒有實(shí)數(shù)根的是( 。

A.2x+30B.x210C.D.x2+x+10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年冬奧會,鼓勵(lì)更多的大學(xué)生參與到志愿服務(wù)中,甲、乙兩所學(xué)校組織了志愿服務(wù)團(tuán)隊(duì)選拔活動,經(jīng)過初選,兩所學(xué)校各有300名學(xué)生進(jìn)入綜合素質(zhì)展示環(huán)節(jié),為了了解這些學(xué)生的整體情況,從兩校進(jìn)入綜合素質(zhì)展示環(huán)節(jié)的學(xué)生中分別隨機(jī)抽取了50名學(xué)生的綜合素質(zhì)展示成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析,下面給出了部分信息.

a.甲學(xué)校學(xué)生成績的頻數(shù)分布直方圖如圖(數(shù)據(jù)分成6組:,,,).

b.甲學(xué)校學(xué)生成績在這一組是:

80 80 81 81.5 82 83 83 84

85 86 86.5 87 88 88.5 89 89

c.乙學(xué)校學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(85分及以上為優(yōu)秀)如下:

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

83.3

84

78

46%

根據(jù)以上信息,回答下列問題:

1)甲學(xué)校學(xué)生,乙學(xué)校學(xué)生的綜合素質(zhì)展示成績同為82分,這兩人在本校學(xué)生中綜合素質(zhì)展示排名更靠前的是________(填“”或“”);

2)根據(jù)上述信息,推斷________學(xué)校綜合素質(zhì)展示的水平更高,理由為:__________________________

(至少從兩個(gè)不同的角度說明推斷的合理性).

3)若每所學(xué)校綜合素質(zhì)展示的前120名學(xué)生將被選入志愿服務(wù)團(tuán)隊(duì),預(yù)估甲學(xué)校分?jǐn)?shù)至少達(dá)到________分的學(xué)生才可以入選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸于、兩點(diǎn),交軸于點(diǎn),連接

1)求拋物線的解析式;

2)點(diǎn)是拋物線上一點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

①當(dāng)點(diǎn)在第一象限時(shí),過點(diǎn)軸,交于點(diǎn),過點(diǎn)軸,垂足為,連接,當(dāng)相似時(shí),求點(diǎn)的坐標(biāo);

②請直接寫出使的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+bx+c的圖象與坐標(biāo)軸交于A,B,C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(﹣3,0),點(diǎn)B的坐標(biāo)為(4,0),連接AC,BC.動點(diǎn)P從點(diǎn)A出發(fā),在線段AC上以每秒1個(gè)單位長度的速度向點(diǎn)C作勻速運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)O出發(fā),在線段OB上以每秒1個(gè)單位長度的速度向點(diǎn)B作勻速運(yùn)動,當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.連接PQ.

(1)填空:b=   c=   ;

(2)在點(diǎn)P,Q運(yùn)動過程中,APQ可能是直角三角形嗎?請說明理由;

(3)在x軸下方,該二次函數(shù)的圖象上是否存在點(diǎn)M,使PQM是以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,請求出運(yùn)動時(shí)間t;若不存在,請說明理由;

(4)如圖,點(diǎn)N的坐標(biāo)為(﹣,0),線段PQ的中點(diǎn)為H,連接NH,當(dāng)點(diǎn)Q關(guān)于直線NH的對稱點(diǎn)Q′恰好落在線段BC上時(shí),請直接寫出點(diǎn)Q′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為原點(diǎn),直線(為常數(shù),且)經(jīng)過點(diǎn),交軸于點(diǎn),已知點(diǎn)的坐標(biāo)為

的值;

過點(diǎn)軸,垂足為點(diǎn),點(diǎn)的延長線上,連接,在線段上分別取點(diǎn)使得,連接,設(shè)點(diǎn)的縱坐標(biāo)為,的面積為,求之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

(2)的條件下,連接,當(dāng)時(shí),點(diǎn)在線段上,連接.求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】投石機(jī)是古代的大型攻城武器,是數(shù)學(xué)、工程、物理等復(fù)雜學(xué)科相互融合的應(yīng)用(如圖(1)).在我國《元史·亦思馬因傳》中對這種投石機(jī)就有過記載(如圖(2)).

圖(3)是圖(1)中人工投石機(jī)的側(cè)面示意圖,炮架的橫向支架均與地面相互平行,已知米,炮軸距地面4.5米,,炮梢頂端點(diǎn)能到達(dá)水平地面,最高點(diǎn)能到達(dá)點(diǎn)處,且旋轉(zhuǎn)的夾角(點(diǎn),,,在同一平面內(nèi)),求點(diǎn)到水平地面的距離.(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】食品安全受到全社會的廣泛關(guān)注,武漢市某中學(xué)對部分學(xué)生就食品安全知識的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

1)接受問卷調(diào)查的學(xué)生共有   人,扇形統(tǒng)計(jì)圖中了解部分所對應(yīng)扇形的圓心角為   ;

2)若從對食品安全知識達(dá)到了解程度的2個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加食品安全知識競賽,恰好抽到1個(gè)男生和1個(gè)女生的概率為   ;

3)若該中學(xué)共有學(xué)生900人,請根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對食品安全知識達(dá)到了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

同步練習(xí)冊答案