【題目】如圖,在ABCD中,對角線AC、BD相交于點O,點E、F分別是邊AD、AB上的點,連結(jié)OE、OF、EF.若AB=7,BC=5,∠DAB=45°,則①點C到直線AB的距離是_____.②△OEF周長的最小值是________.
【答案】5
【解析】
①過D作DP⊥AB于P,,則△ADP是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)得到,進(jìn)而求得AP=DP=5;
②作點O關(guān)于AB的對稱點M,點O關(guān)于AD的對稱點N,連接MN交AB于F交AD于E,則△OEF周長的最小, △OEF周長的最小值=MN,由作圖得: AN=AO=AM, ∠NAD=∠DAO, ∠MAB=∠BAO,于是得到.根據(jù)三角形的中位線的性質(zhì)得到,,根據(jù)勾股定理得到,然后根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.
①過D作DP⊥AB于P,
則A△DP是等腰直角三角形,
,
,
∴AP=DP=sin45°×5=5;
②作點O關(guān)于AB的對稱點M,點O關(guān)于AD的對稱點N,連接MN交AB于F交AD于E,則△OEF周長的最小, △OEF周長的最小值=MN,
由作圖得:AN=AO=AM, ∠NAD=∠DAO, ∠MAB=∠BAO,
,
,
∵OM⊥AB于Q,
,
,
,
,
,
,
,
∴△OEF周長的最小值是.
故答案為①5;② .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市出租車計費方法如圖所示,表示行駛里程,(元)表示車費,請根據(jù)圖象回答下列問題:
(1)出租車的起步價是多少元;
(2)當(dāng) 時,求關(guān)于的函數(shù)關(guān)系式;
(3)若某乘客有一次乘出租車的車費為32元,求這位乘客乘車的里程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,M是BC邊上的一點,E是CD邊的中點,AE平分∠DAM.
(1)證明:AM=AD+MC.
(2)若四邊形ABCD是平行四邊形,其它條件不變,如圖,(1)中的結(jié)論是否成立?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天水市某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在19天內(nèi)完成,約定這批粽子的出廠價為每只4元,為按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李紅第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿足如下關(guān)系:.
(1)李紅第幾天生產(chǎn)的粽子數(shù)量為260只?
(2)如圖,設(shè)第x天生產(chǎn)的每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來刻畫,若李紅第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價﹣成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點A在第一象限,AB∥x軸,AD∥y軸,且對角線的交點與原點O重合.在邊AB從小于AD到大于AD的變化過程中,若矩形ABCD的周長始終保持不變,則經(jīng)過動點A的反比例函數(shù)y=(k≠0)中k的值的變化情況是( )
A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線經(jīng)過A(﹣4,0)、B(0,﹣4)、C(2,0)三點,若點M為第三象限內(nèi)拋物線上一動點,△AMB的面積為S,則S的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,AB=AC,點E是邊AC上一點,過點E作EF∥BC交AB于點F
(1)如圖①,求證:AE=AF;
(2)如圖②,將△AEF繞點A逆時針旋轉(zhuǎn)α(0°<α<144°)得到△AE′F′.連接CE′BF′.
①若BF′=6,求CE′的長;
②若∠EBC=∠BAC=36°,在圖②的旋轉(zhuǎn)過程中,當(dāng)CE′∥AB時,直接寫出旋轉(zhuǎn)角α的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com