【題目】如圖,矩形ABCD的頂點(diǎn)A在第一象限,AB∥x軸,AD∥y軸,且對(duì)角線的交點(diǎn)與原點(diǎn)O重合.在邊AB從小于AD到大于AD的變化過(guò)程中,若矩形ABCD的周長(zhǎng)始終保持不變,則經(jīng)過(guò)動(dòng)點(diǎn)A的反比例函數(shù)y=k≠0)中k的值的變化情況是( )

A. 一直增大 B. 一直減小 C. 先增大后減小 D. 先減小后增大

【答案】C

【解析】試題分析:設(shè)矩形ABCD中,AB=2a,AD=2b.矩形ABCD的周長(zhǎng)始終保持不變,矩形的周長(zhǎng)22a+2b=4a+b)為定值,可得a+b為定值.又因矩形對(duì)角線的交點(diǎn)與原點(diǎn)O重合,可得k=ABAD=ab,a+b為定值時(shí),當(dāng)a=b時(shí),ab最大,所以在邊AB從小于AD到大于AD的變化過(guò)程中,k的值先增大后減小.故答案選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列敘述中,正確的是( 。

A. 在同一平面內(nèi),兩條直線的位置關(guān)系有三種,分別是相交、平行、垂直

B. 不相交的兩條直線叫平行線

C. 兩條直線的鐵軌是平行的

D. 我們知道,對(duì)頂角是相等的,那么反過(guò)來(lái),相等的角就是對(duì)頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用配方法解一元二次方程x2+6x30,原方程可變形為( 。

A.x+329B.x+3212C.x+3215D.x+3239

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為(  )

A. 3km B. 3km C. 4km D. (3-3)km

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩圓相離,半徑分別為2cm、3cm,則兩圓圓心距d范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系xOy中,B , C兩點(diǎn)的坐標(biāo)分別為 , ,CDy軸于點(diǎn)D , 直線l 經(jīng)過(guò)點(diǎn)D.

(1)直接寫出點(diǎn)D的坐標(biāo);
(2)作CE⊥直線l于點(diǎn)E , 將直線CE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°,交直線l于點(diǎn)F , 連接BF.
①依題意補(bǔ)全圖形;
②通過(guò)觀察、測(cè)量,同學(xué)們得到了關(guān)于直線BF與直線l的位置關(guān)系的猜想,請(qǐng)寫出你的猜想;
③通過(guò)思考、討論,同學(xué)們形成了證明該猜想的幾種思路:
思路1:作CMCF , 交直線l于點(diǎn)M , 可證△CBF≌△CDM , 進(jìn)而可以得出 ,從而證明結(jié)論.
思路2:作BNCE , 交直線CE于點(diǎn)N , 可證△BCN≌△CDE , 進(jìn)而證明四邊形BFEN為矩形,從而證明結(jié)論.
……
請(qǐng)你參考上面的思路完成證明過(guò)程.(一種方法即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點(diǎn)分別在x軸和y軸上,OA=1,OB=,連接AB,過(guò)AB中點(diǎn)C1分別作x軸和y軸的垂線,垂足分別是點(diǎn)A1、B1,連接A1B1,再過(guò)A1B1中點(diǎn)C2作x軸和y軸的垂線,照此規(guī)律依次作下去,則點(diǎn)Cn的坐標(biāo)為 ___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一道題計(jì)算:(2m4-4m3n-2m2n2-m4-2m2n2+-m4+4m3n-n3)的值,其中,n=-1.”小強(qiáng)不小心把錯(cuò)抄成了,但他的計(jì)算結(jié)果卻也是正確的,你能說(shuō)出這是為什么嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AO、B三點(diǎn)在同一條直線上,OD平分AOCOE平分BOC

1)若BOC=62°,求DOE的度數(shù);

2)若BOC=a°,求DOE的度數(shù);

3)圖中是否有互余的角?若有請(qǐng)寫出所有互余的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案