【題目】某小區(qū)游泳館夏季推出兩種收費方式.方式一:先購買會員證,會員證200元,只限本人當年使用,憑證游泳每次需另付費10元:方式二:不購買會員證,每次游泳需付費20元.

1)若甲計劃今年夏季游泳的費用為500元,則選擇哪種付費方式游泳次數(shù)比較多?

2)若乙計劃今年夏季游泳的次數(shù)超過15次,則選擇哪種付費方式游泳花費比較少?

【答案】1)費用500元則選擇方式一游泳的次數(shù)多;(2)當游泳次數(shù)小于20次時選擇方式二花費少;當游泳次數(shù)等于20次時兩種方式費用一樣:當游泳次數(shù)大于20次選擇方式一花費少.

【解析】

1)根據(jù)兩種付費方式,分別求出游泳次數(shù),比較即可得答案;

2)設(shè)付費方式一、二的費用為y1y2,游泳次數(shù)為x,費用的差為y,根據(jù)付費方式可得出y1y2關(guān)于x的解析式,即可得出y關(guān)于x的解析式,根據(jù)一次函數(shù)的性質(zhì)即可得答案.

1)方式一:,

方式二:

3025,

∴費用500元時,選擇方式一游泳的次數(shù)多.

2)設(shè)付費方式一、二的費用為y1y2,游泳次數(shù)為x,費用的差為y,

根據(jù)題意得:y1=200+10x,y2=20x,

y=y1-y2=-10x+200

y=0時,x=20

-100,

yx的增大而減小,

x20時,y0,

∴方式一花費比較少,

x20時,y0,

∴方式二花費比較少,

綜上所述,超過15次時分情況可得;當游泳次數(shù)小于20次時選擇方式二花費少;當游泳次數(shù)等于20次時兩種方式費用一樣:當游泳次數(shù)大于20次選擇方式一花費少.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的盒子里裝有3個分別寫有數(shù)字﹣20,1的小球,它們除了數(shù)字不同以外其余完全相同,先從盒子里隨機抽取1個小球,再從剩下的小球中抽取1個,將這兩個小球上的數(shù)字依次記為ab,則滿足關(guān)于x的方程x2+ax+b0有實數(shù)根的概率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動點(與點CB不重合),連接AP,延長BC至點Q,使得∠PAC=QAC,過點Q作射線QH交線段APH,交AB于點M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大。ㄓ煤α的式子表示);

2)用等式表示線段QCBM之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形中,,延長至點,使得過點,交線段于點.設(shè)

1)連結(jié),請求出的度數(shù)和的半徑(的代數(shù)式表示) (直接寫出答案)

2)證明:的中點.

3)如圖2,延長至點,使得, 連結(jié),于點

①連結(jié),與四邊形其它三邊中的一邊相等時,請求出所有滿足條件的的值.

②當點關(guān)于直線對稱點恰好落在上,連結(jié).記的面積分別為,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=12EBC邊的中點,點P在線段AD上,過PPFAEF,設(shè)PA=x

1)求證:△PFA∽△ABE;

2)當點P在線段AD上運動時,是否存在實數(shù)x,使得以點P,FE為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;

3)探究:當以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出DP滿足的條件:   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小正方形邊長都是個單位長度,的頂點均在格點上.建立平面直角坐標系后,點的坐標為,點的坐標為,點的坐標為

1)先將向左平移個單位長度,再向下平移個單位長度得到(點、、的對應點分別為、),請在圖中畫出;

2)再將繞點逆時針旋轉(zhuǎn)后得到(點、的對應點分別為、),試在圖中畫出,并直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為個單位長度的小正方形組成的的網(wǎng)格中,給出了格點(網(wǎng)格線的交點)為端點的線段

(1)將線段通過平移使得點和點重合,點的對應點為,則應該先將線段 平移個單位,再向上平移 單位,畫出平移后對應的線段

(2)將線段點按順時針方向旋轉(zhuǎn)點的對應點為 ,畫出線段

(3)填空:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某乒乓球館使用發(fā)球機進行輔助訓練,出球口在桌面中線端點A處的正上方,假設(shè)每次發(fā)出的乒乓球的運動路線固定不變,且落在中線上,在乒乓球運行時,設(shè)乒乓球與端點A的水平距離為x(米),與桌面的高度為y(米),經(jīng)多次測試后,得到如下部分數(shù)據(jù):

x/

0

0.2

0.4

0.6

1

1.4

1.6

1.8

y/

0.24

0.33

0.4

0.45

0.49

0.45

0.4

0.33

1)由表中的數(shù)據(jù)及函數(shù)學習經(jīng)驗,求出y關(guān)于x的函數(shù)解析式;

2)試求出當乒乓球落在桌面時,其落點與端點A的水平距離是多少米?

3)當乒乓球落在桌面上彈起后,yx之間滿足

①用含a的代數(shù)式表示k;

②已知球網(wǎng)高度為0.14米,球桌長(1.4×2)米.若a=-0.5,那么乒乓球彈起后,是否有機會在某個擊球點可以將球沿直線扣殺到端點A?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=-2x+mx+n經(jīng)過點A0,2),B3,-4).

1)求該拋物線的函數(shù)表達式及對稱軸;

2)設(shè)點B關(guān)于原點的對稱點為C,點D是拋物線對稱軸上一動點,記拋物線在AB之間的部分為圖象G(包含A,B兩點),如果直線CD與圖象G有兩個公共點,結(jié)合函數(shù)的圖象,求點D縱坐標t的取值范圍.

查看答案和解析>>

同步練習冊答案