【題目】如圖,直線 分別交x軸、y軸于A、B兩點(diǎn),線段AB的垂直平分線分別交x軸、y軸于C、D兩點(diǎn).

(1)求點(diǎn)C的坐標(biāo);
(2)求△BCD的面積.

【答案】
(1)

解:∵直線y=﹣ x+8,分別交x軸、y軸于A、B兩點(diǎn),

當(dāng)x=0時(shí),y=8;當(dāng)y=0時(shí),x=6.

∴OA=6,OB=8.

在Rt△AOB中,AB= =10,

∵CD是線段AB的垂直平分線,

∴AE=BE=5.

∵∠OAB=∠CAE,∠AOB=∠AEC=90°,

∴△AOB∽△AEC,

,

∴AC=

∴OC=AC﹣OA=

∴點(diǎn)C的坐標(biāo)為(﹣ ,0)


(2)

解:∵∠ABO=∠DBE,∠AOB=∠BED=90°,

∴△AOB∽△DEB,

,即

∴BD= ,

∴SBCD= BDOC= × × =


【解析】(1)由直線y=﹣ x+8,分別交x軸、y軸于A、B兩點(diǎn),即可求得點(diǎn)A與B的坐標(biāo),即可得OA,OB,由勾股定理即可求得AB的長(zhǎng),由CD是線段AB的垂直平分線,可求得AE與BE的長(zhǎng),易證得△AOB∽△AEC,然后由相似三角形的對(duì)應(yīng)邊成比例,即可求得AC的長(zhǎng),繼而求得點(diǎn)C的坐標(biāo);(2)易證得△AOB∽△DEB,由相似三角形的對(duì)應(yīng)邊成比例,即可求得BD的長(zhǎng),又由SBCD= BDOC,即可求得△BCD的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校計(jì)劃購(gòu)買籃球、排球共20個(gè),購(gòu)買2個(gè)籃球,3個(gè)排球,共需花費(fèi)190元;購(gòu)買3個(gè)籃球的費(fèi)用與購(gòu)買5個(gè)排球的費(fèi)用相同。

(1)籃球和排球的單價(jià)各是多少元?

(2)若購(gòu)買籃球不少于8個(gè),所需費(fèi)用總額不超過800元.請(qǐng)你求出滿足要求的所有購(gòu)買方案,并直接寫出其中最省錢的購(gòu)買方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(1)﹣22×7﹣(﹣3)×6+5;

(2)化簡(jiǎn)3(m﹣2n+2)﹣(﹣2m﹣3n)﹣1;

(3)解方程:2(2x+1)﹣(10x+1)=6;

(4)=2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的圖形經(jīng)折疊后形成如圖所示的棱柱.

這個(gè)棱柱有幾個(gè)側(cè)面?側(cè)面?zhèn)數(shù)與底面邊數(shù)有什么關(guān)系?

中哪些圖形的形狀與大小一定完全相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為A(0,1)、B(5,1)、C(7,3)、D(2,5).

(1)在如圖所示的平面直角坐標(biāo)系畫出該四邊形;

(2)四邊形ABCD的面積是________;

(3)四邊形ABCD內(nèi)(邊界點(diǎn)除外)一共有_____個(gè)整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)都是整數(shù)的點(diǎn)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,直線,,分別通過A,B,C三點(diǎn),且,若的距離為5,的距離為7,則正方形ABCD的面積等于( )

A. 148 B. 70 C. 144 D. 74

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系上有個(gè)點(diǎn)P(1,0),點(diǎn)P1次向上跳動(dòng)1個(gè)單位至點(diǎn)P1(1,1),緊接著第2次向左跳動(dòng)2個(gè)單位至點(diǎn)P2(―1,1),第3次向上跳動(dòng)1個(gè)單位,第4次向右跳動(dòng)3個(gè)單位,第5次又向上跳動(dòng)1個(gè)單位,第6次向左跳動(dòng)4個(gè)單位,……,依此規(guī)律跳動(dòng)下去,點(diǎn)P100次跳動(dòng)至點(diǎn)P100的坐標(biāo)是 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小丁將中國(guó)的清華大學(xué)、北京大學(xué)及英國(guó)的劍橋大學(xué)的圖片分別貼在3張完全相同的不透明的硬紙板上,制成名?ㄆ,如圖,小丁將這3張卡片背面朝上洗勻后放在桌子上,從中隨機(jī)取一張卡片,放回后洗勻,在隨機(jī)抽取一張卡片.

(1)小丁第一次抽取的卡片上的圖片是劍橋大學(xué)的概率是多少?(請(qǐng)直接寫出結(jié)果)
(2)請(qǐng)你用列表法或畫樹狀圖(樹狀圖)法,幫助小丁求出兩次抽取的卡片上的圖片一個(gè)是國(guó)內(nèi)大學(xué),一個(gè)是國(guó)外大學(xué)的概率.(卡片名稱可用字母表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A信封中裝有兩張卡片,卡片上分別寫著4cm、2cm,B信封中裝有三張卡片,卡片上分別寫著3cm、5cm、2cm.A、B信封外有一張寫著5cm的卡片,所有卡片的形狀、大小完全相同,現(xiàn)隨機(jī)從兩個(gè)信封中各取一張卡片,與信封外的卡片放在一起,用卡片上標(biāo)明的數(shù)分別作為三條線段的長(zhǎng)度.

(1)求這三條線段能組成三角形的概率(列舉法、列表法或樹形圖法);
(2)求這三條線段能組成直角三角形的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案