【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點(diǎn)D,且∠CBE=2C

1)求證:BE與⊙O相切;

2)若DF=9tanC=,求直徑AB的長.

【答案】1)見解析;(225

【解析】

1)由OE垂直于弦BC,可證∠BOE+OBF=90°,由圓周角定理可得BOE=2∠C,從而CBE=∠BOE,進(jìn)而可證BEO相切;

2)由DF=9tanC=,可求出CF=BF=12,設(shè)半徑長是x,在RtBOF中,利用勾股定理列方程求解即可.

1)證明:∵OE垂直于弦BC,

∴∠BOE+OBF=90°,

CBE=2∠C,BOE=2∠C,

CBE=∠BOE,

∴∠CBE+OBF=90°,

∴∠OBE=90°,

BEO相切;

2)解:∵OE垂直于弦BC,

∴∠CFD=BFO=90°,CF=BF

DF=9tanC=,

CF=BF=12

設(shè)半徑長是x,則OF=x-9

RtBOF中,

x2=(x-9)2+122

x=,

∴直徑AB=25

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)在直線上,過點(diǎn)軸交軸于點(diǎn),以點(diǎn)為直角項點(diǎn),為直角邊在的右側(cè)作等腰直角,再過點(diǎn),分別交直線軸于兩點(diǎn),以點(diǎn)為直角頂點(diǎn),為直角邊在的右側(cè)作等腰直角,,按此規(guī)律進(jìn)行下去,則點(diǎn)的坐標(biāo)為__________ (結(jié)果用含正整數(shù)的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是⊙O的直徑,弦BDAOE,連接BC,過點(diǎn)OOFBCF,若BD=8cm,AE=2cm,則OF的長度是( 。

A. 3cm B. cm C. 2.5cm D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)得到△ADE,其中點(diǎn)B、C分別與點(diǎn)D、E對應(yīng),如果BD、C三點(diǎn)恰好在同一直線上,那么下列結(jié)論錯誤的是(

A.ACB=∠AEDB.BAD=∠CAE

C.ADE=∠ACED.DAC=∠CDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.為了解全國中學(xué)生視力的情況,應(yīng)采用普查的方式

B.某種彩票中獎的概率是,買1000張這種彩票一定會中獎

C.2000名學(xué)生中隨機(jī)抽取200名學(xué)生進(jìn)行調(diào)查,樣本容量為200名學(xué)生

D.從只裝有白球和綠球的袋中任意摸出一個球,摸出黑球是確定事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠BAC=90°,用尺規(guī)過點(diǎn)A作一條直線,使其將ABC分成兩個相似的三角形,其作法不正確的是_______.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四個全等的直角三角形按圖示方式圍成正方形ABCD,過各較長直角邊的中點(diǎn)作垂線,圍成面積為S的小正方形EFGH.已知AMRtABM較長直角邊,AM2EF,則正方形ABCD的面積為( 。

A. 14SB. 13SC. 12SD. 11S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(定義學(xué)習(xí))

定義:如果四邊形有一組對角為直角,那么我們稱這樣的四邊形為對直四邊形

(判斷嘗試)

在①梯形;②矩形:③菱形中,是對直四邊形的是哪一個. (填序號)

(操作探究)

在菱形ABCD中,于點(diǎn)E,請在邊ADCD上各找一點(diǎn)F,使得以點(diǎn)AE、C、F組成的四邊形為對直四邊形,畫出示意圖,并直接寫出EF的長,

(實(shí)踐應(yīng)用)

某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,

.現(xiàn)根據(jù)客戶要求,需將每張四邊形板材進(jìn)一步分割成兩個等腰三角形板材和一個對直四邊形"板材,且這兩個等腰三角形的腰長相等,要求材料充分利用無剩余.求分割后得到的等腰三角形的腰長,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,陰影部分的面積是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案