【題目】如圖,已知一次函數(shù)y=kx+b的圖象交反比例函數(shù)的圖象于點(diǎn)A(2,﹣4)和點(diǎn)B(n,﹣2),交x軸于點(diǎn)C.
(1)求這兩個(gè)函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)請(qǐng)直接寫(xiě)出使一次函數(shù)值大于反比例函數(shù)值的x的范圍.
【答案】(1)一次函數(shù)表達(dá)式為y=x﹣6;反比例函數(shù)的表達(dá)式是;(2)6;(3)0<x<2或x>4
【解析】
(1)先把點(diǎn)A的坐標(biāo)代入反比例函數(shù)表達(dá)式,從而的反比例函數(shù)解析式,再求點(diǎn)B的坐標(biāo),然后代入反比例函數(shù)解析式求出點(diǎn)B的坐標(biāo),再利用待定系數(shù)法求解即可;
(2)根據(jù)三角形的面積公式計(jì)算即可;
(3)觀察函數(shù)圖象即可求出不等式kx+b>的解集.
解:(1)把A(2,﹣4)的坐標(biāo)代入得:,
∴4﹣2m=﹣8,反比例函數(shù)的表達(dá)式是;
把B(n,﹣2)的坐標(biāo)代入得,
解得:n=4,
∴B點(diǎn)坐標(biāo)為(4,﹣2),
把A(2,﹣4)、B(4,﹣2)的坐標(biāo)代入y=kx+b得,
解得,
∴一次函數(shù)表達(dá)式為y=x﹣6;
(2)當(dāng)y=0時(shí),x=0+6=6,
∴OC=6,
∴△AOB的面積=×6×4﹣×6×2=6;
(3)由圖象知,一次函數(shù)值大于反比例函數(shù)值的x的范圍為0<x<2或x>4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABN中,∠B =90°,點(diǎn)M是AB上的動(dòng)點(diǎn)(不與A,B兩點(diǎn)重合),點(diǎn)C是BN延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)N重合),且AM=BC,CN=BM,連接CM與AN交于點(diǎn)P.
(1)在圖1中依題意補(bǔ)全圖形;
(2)小偉通過(guò)觀察、實(shí)驗(yàn),提出猜想:在點(diǎn)M,N運(yùn)動(dòng)的過(guò)程中,始終有∠APM=45°.小偉把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的一種思路:
要想解決這個(gè)問(wèn)題,首先應(yīng)想辦法移動(dòng)部分等線段構(gòu)造全等三角形,證明線段相等,再構(gòu)造平行四邊形,證明線段相等,進(jìn)而證明等腰直角三角形,出現(xiàn)45°的角,再通過(guò)平行四邊形對(duì)邊平行的性質(zhì),證明∠APM=45°.
他們的一種作法是:過(guò)點(diǎn)M在AB下方作MDAB于點(diǎn)M,并且使MD=CN.通過(guò)證明△AMD△CBM,得到AD=CM,再連接DN,證明四邊形CMDN是平行四邊形,得到DN=CM,進(jìn)而證明△ADN是等腰直角三角形,得到∠DNA=45°.又由四邊形CMDN是平行四邊形,推得∠APM=45°.使問(wèn)題得以解決.
請(qǐng)你參考上面同學(xué)的思路,用另一種方法證明∠APM=45°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形中,,對(duì)角線,相交于點(diǎn),點(diǎn),分別從,兩點(diǎn)同時(shí)出發(fā),以的速度沿,運(yùn)動(dòng),到點(diǎn),時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為,的面積為,則與的函數(shù)關(guān)系可用圖象表示為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分類(lèi)討論在數(shù)學(xué)中既是一個(gè)重要的策略思想又是一個(gè)重要的數(shù)學(xué)方法.例如對(duì)于像x2+|x|-6=0這樣含有絕對(duì)值符號(hào)的方程,可采用如下的分類(lèi)討論方法:
解:當(dāng)x≥0時(shí),原方程可化為x2+x-6=0.
解得:x1=-3,x2=2.
∵x≥0,∴x=2.
當(dāng)x<0時(shí),原方程可化為x2-x-6=0,
解得:x1=3,x2=-2.
∵x<0,∴x=-2.
綜上可得:原方程的解為x1=-2,x2=2.
仿照上面的解法,解方程:x2+|2x-1|-4=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖像與軸交于兩點(diǎn),與軸交于點(diǎn),其頂點(diǎn)為,連接,過(guò)點(diǎn)作軸的垂線.
(1)求點(diǎn)的坐標(biāo);
(2)直線上是否存在點(diǎn),使的面積等于的面積的3倍?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖7,在四邊形ABCD中,AB=BC,∠ABC=60°,E是CD邊上一點(diǎn),連接BE,以BE為一邊作等邊三角形BEF.請(qǐng)用直尺在圖中連接一條線段,使圖中存在經(jīng)過(guò)旋轉(zhuǎn)可完全重合的兩個(gè)三角形,并說(shuō)明這兩個(gè)三角形經(jīng)過(guò)什么樣的旋轉(zhuǎn)可重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+(a>0,b<0)的圖象與x軸只有一個(gè)公共點(diǎn)A
(1)當(dāng)a=時(shí),求點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)A的直線y=x+k與二次函數(shù)的圖象相交于另一點(diǎn)B,當(dāng)b≥﹣1時(shí),求點(diǎn)B的橫坐標(biāo)m的取值范圍
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,的三條角平分線交于點(diǎn),過(guò)作的垂線分別交、于點(diǎn)、.
(1)寫(xiě)出圖中的相似三角形(全等三角形除外),并選一對(duì)證明.
(2)若,,比長(zhǎng),求的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】太原雙塔寺又名永祚寺,是國(guó)家級(jí)文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會(huì)實(shí)踐小組為了測(cè)量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時(shí)地面上的點(diǎn)E,標(biāo)桿的頂端點(diǎn)D,舍利塔的塔尖點(diǎn)B正好在同一直線上,測(cè)得EC=4米,將標(biāo)桿CD向后平移到點(diǎn)C處,這時(shí)地面上的點(diǎn)F,標(biāo)桿的頂端點(diǎn)H,舍利塔的塔尖點(diǎn)B正好在同一直線上(點(diǎn)F,點(diǎn)G,點(diǎn)E,點(diǎn)C與塔底處的點(diǎn)A在同一直線上),這時(shí)測(cè)得FG=6米,GC=53米.
請(qǐng)你根據(jù)以上數(shù)據(jù),計(jì)算舍利塔的高度AB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com