【題目】在正方形中,邊上一點,

1)將繞點按順時針方向旋轉(zhuǎn)。使、重合,得到,如圖(a)所示.觀察可知:與相等的線段是____________________

2)如圖(b)所示,正方形中,、分別是、邊上的點,且,試通過旋轉(zhuǎn)的方式說明:

3)在(2)的條件下,連接分別交于點、,如圖(c)所示.判斷、之間的關(guān)系,直接寫出結(jié)論.

【答案】1;(2)見解析;(3

【解析】

1)如圖(a),直接根據(jù)旋轉(zhuǎn)的性質(zhì)得到DE=BF,∠AFB=AED;

2)將△ADQ繞點A按順時針方向旋轉(zhuǎn)90°,則ADAB重合,得到△ABE,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠EAQ=BAD=90°,AE=AQBE=DQ,而∠PAQ=45°,則∠PAE=45°,再根據(jù)全等三角形的判定方法得到△APE≌△APQ,則PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;

3)根據(jù)正方形的性質(zhì)有∠ABD=ADB=45°,將△ADN繞點A按順時針方向旋轉(zhuǎn)90°,則ADAB重合,得到△ABK,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠ABK=ADN=45°,BK=DN,AK=AN,與(2)一樣可證明△AMN≌△AMK得到MN=MK,由于∠MBK=MBA+KBA=45°+45°=90°,得到△BMK為直角三角形,根據(jù)勾股定理得BK2+BM2=MK2,然后利用等相等代換即可得到BM2+DN2=MN2

1)如圖(a)

∵△ADE繞點A按順時針方向旋轉(zhuǎn),使AD、AB重合,得到△ABF

DE=BF,∠AFB=AED

故答案為:BF,AED

2)將△ADQ繞點A按順時針方向旋轉(zhuǎn)90°,則ADAB重合,得到△ABE,如圖2,

則∠D=ABE=90°,即點E、B、P共線,∠EAQ=BAD=90°,AE=AQBE=DQ

∵∠PAQ=45°,

∴∠PAE=45°,

∴∠PAQ=PAE

在△APE和△APQ中,

,

∴△APE≌△APQ(SAS)

PE=PQ,

PE=PB+BE=PB+DQ

DQ+BP=PQ;

3BM2+DN2=MN2.證明如下:

∵四邊形ABCD為正方形,

∴∠ABD=ADB=45°,

如圖3,將△ADN繞點A按順時針方向旋轉(zhuǎn)90°,則ADAB重合,得到△ABK

則∠ABK=ADN=45°,BK=DNAK=AN,

與(2)一樣可證明△AMN≌△AMK,得到MN=MK

∵∠MBK=MBA+KBA=45°+45°=90°,

∴△BMK為直角三角形,

BK2+BM2=MK2

BM2+DN2=MN2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019101日,中華人民共和國70年華誕之際,王梓涵和學(xué)校國旗護衛(wèi)隊的其他同學(xué)們趕到學(xué)校舉行了簡樸而降重的升旗儀式.傾聽著雄壯的國歌聲,目送著五星紅旗級緩升起,不禁心潮澎湃,愛國之情油然而生.愛動腦筋的王梓涵設(shè)計了一個方案來測量學(xué)校旗桿的高度.將升旗的繩子拉直到末端剛好接觸地面,測得此時繩子末端距旗桿底端2米,然后將繩子末端拉直到距離旗桿5m處,測得此時繩子末端距離地面高度為1m,最后根據(jù)剛剛學(xué)習(xí)的勾股定理就能算出旗桿的高度為( 。

A.10mB.11mC.12mD.13m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】毎年6月,學(xué)校門口的文具店都會購進畢業(yè)季暢銷商品進行銷售.已知校門口“小光文具店“在5月份就售出每本8元的A種品牌同學(xué)錄90本,每本10元的B種品牌同學(xué)錄175本.

1)某班班長幫班上同學(xué)代買A種品牌和B種品牌同學(xué)錄共27本,共花費246元,請問班長代買A種品牌和B種品牌同學(xué)錄各多少本?

2)該文具店在6月份決定將A種品牌同學(xué)錄每本降價3元后銷售,B種品牌同學(xué)錄每本降價a%a0)后銷售.于是,6月份該文具店A種品牌同學(xué)錄的銷量比5月份多了a%,B種品牌同學(xué)錄的銷量比5月份多了(a+20%,且6月份A、B兩種品牌的同學(xué)錄的銷售總額達到了2550元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以點P(-1,0)為圓心的圓,交x軸于B、C兩點(BC的左側(cè)),交y軸于A、D兩點(AD的下方),AD=,將ABC繞點P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點的坐標;

(2)請在圖中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點M的坐標;

(3)動直線l從與BM重合的位置開始繞點B順時針旋轉(zhuǎn),到與BC重合時停止,設(shè)直線lCM交點為E,點QBE的中點,過點EEGBCG,連接MQ、QG.請問在旋轉(zhuǎn)過程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線BD上有一點P,使PC+PE的和最小,則這個最小值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC90°,AD⊥BCD,將AB邊沿AD折疊,發(fā)現(xiàn)B點的對應(yīng)點E正好在AC的垂直平分線上,則∠C_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司試銷一種成本單價為50/件的新產(chǎn)品,規(guī)定試銷時銷售單價不低于成本單價,又不高于80/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價x(元/件)可近似看作一次函數(shù)ykx+b的關(guān)系(如圖所示)

I)根據(jù)圖象,求一次函數(shù)ykx+b的解析式,并寫出自變量x的取值范圍;

(Ⅱ)該公司要想每天獲得最大的利潤,應(yīng)把銷售單價定為多少?最大利潤值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩校參加學(xué)生英語口語比賽,兩校參賽人數(shù)相等.比賽結(jié)束后,發(fā)現(xiàn)學(xué)生成績分別為7分、8分、9分、10分(滿分為10分),乙校平均分是83分,乙校的中位數(shù)是8分.依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的甲校成績統(tǒng)計表和乙校成績統(tǒng)計圖;

甲校成績統(tǒng)計表

分數(shù)

7

8

9

10

人數(shù)

11

0

8

1)請你將乙校成績統(tǒng)計圖直接補充完整;

2)請直接寫出甲校的平均分是   ,甲校的中位數(shù)是   ,甲校的眾數(shù)是   ,從平均分和中位數(shù)的角度分析   校成績較好(填).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在日常生活中,觀察各種建筑物的地板,就能發(fā)現(xiàn)地板常用各種正多邊形地磚鋪砌成美麗的圖案.也就是說,使用給定的某些正多邊形,能夠拼成一個平面圖形,既不留下空隙,又不互相重疊(在幾何里叫作平面鑲嵌).這顯然與正多邊形的內(nèi)角大小有關(guān).當(dāng)圍繞一點拼在一起的幾個正多邊形的內(nèi)角加在一起恰好組成一個周角(360°)時,就拼成了一個平面圖形.

1)請根據(jù)下列圖形,填寫表中空格.

2)如圖所示,如果限于用一種正多邊形鑲嵌,哪幾種正多邊形能鑲嵌成一個平面圖形.

3)不能用正五邊形形狀的材料鋪滿地面的理由是什么?

4)從正三角形、正四邊形、正六邊形中選一種,再在其他正多邊形中選一種,請畫出用這兩種不同的正多邊形鑲嵌成的一個平面圖形(草圖);并探索這兩種正多邊形共能鑲嵌成幾種不同的平面圖形?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案