【題目】如圖,正方形ABCD的邊長為4,E為AB的中點(diǎn),將△ADE沿直線DE折疊后,點(diǎn)A落在點(diǎn)F處,DF交對角線AC于G,則FG的長是________.
【答案】
【解析】
延長DF,EF分別交BC于H,M,連接DM,根據(jù)折疊的性質(zhì)得到DA=DF,∠DAE=∠DFE=90°,根據(jù)全等三角形的性質(zhì)得到CM=FM,設(shè)CM=FM=x,則BM=4x,EM=2+x,根據(jù)勾股定理列出方程求出x,從而得到CM=FM=,根據(jù)相似三角形的判定與性質(zhì)即可得到結(jié)論.
解:延長DF,EF分別交BC于H,M,連接DM,
∵四邊形ABCD是正方形,
∴DA=DC,∠DAE=∠DCB=90°,
∵將沿直線DE折疊后,點(diǎn)A落在點(diǎn)F處,
∴,
∴,
∵,
∴,
∴,,
∵正方形ABCD的邊長為4,E為AB的中點(diǎn),
∴,
設(shè),則BM=4x,EM=2+x,
在中,由勾股定理得:,
即,解得:,
∴,,,
∵,,
∴,
∴,即,
解得:,,
∴,,
∵,
∴,
∴,即,
∴,
∴,
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進(jìn)行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護(hù)環(huán)境.為了檢查垃圾分類的落實(shí)情況,某居委會成立了甲、乙兩個檢查組,采取隨機(jī)抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進(jìn)行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級數(shù)學(xué)興趣小組在探究相似多邊形問題時,他們提出了下面兩個觀點(diǎn):
觀點(diǎn)一:將外面大三角形按圖1的方式向內(nèi)縮小,得到新三角形,它們對應(yīng)的邊間距都為,則新三角形與原三角形相似.
觀點(diǎn)二:將鄰邊為和的矩形按圖2方式向內(nèi)縮小,得到新的矩形,它們對應(yīng)的邊間距都為,則新矩形與原矩形相似.
請回答下列問題:
(1)你認(rèn)為上述兩個觀點(diǎn)是否正確?請說明理由.
(2)如圖3,已知,,,,將按圖3的方式向外擴(kuò)張,得到,它們對應(yīng)的邊間距都為,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】牧民巴特爾在生產(chǎn)和銷售某種奶食品時,采取客戶先網(wǎng)上訂購,然后由巴特爾付費(fèi)選擇甲或乙快遞公司送貨上門的銷售方式,甲快遞公司運(yùn)送2千克,乙快遞公司運(yùn)送3千克共需運(yùn)費(fèi)42元:甲快遞公司運(yùn)送5千克,乙快遞公司運(yùn)送4千克共需運(yùn)費(fèi)70元.
(1)求甲、乙兩個快遞公司每千克的運(yùn)費(fèi)各是多少元?
(2)假設(shè)巴特爾生產(chǎn)的奶食品當(dāng)日可以全部出售,且選擇運(yùn)費(fèi)低的快遞公司運(yùn)送,若該產(chǎn)品每千克的生產(chǎn)成本y1元(不含快遞運(yùn)費(fèi)),銷售價y2元與生產(chǎn)量x千克之間的函數(shù)關(guān)系式為:y1=,y2=﹣6x+120(0<x<13),則巴特爾每天生產(chǎn)量為多少千克時獲得利潤最大?最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是某商場從一樓到二樓的自動扶梯,圖2是側(cè)面示意圖,MN是二樓樓頂,MN∥PQ,點(diǎn)C在MN上,且位于自動扶梯頂端B點(diǎn)的正上方,BC⊥MN.測得AB=10米,在自動扶梯底端A處測得點(diǎn)C的仰角為50°,點(diǎn)B的仰角為30°,求二樓的層高BC(結(jié)果保留根號)
(參考數(shù)據(jù):sin50°=0.77,cos50°=0.64,tan50°=1.20)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)行垃圾資源化利用,是社會文明水平的一個重要體現(xiàn).某環(huán)保公司研發(fā)的甲、乙兩種智能設(shè)備可利用最新技術(shù)將干垃圾變身為燃料棒.某垃圾處理廠從環(huán)保公司購入以上兩種智能設(shè)備,若干已知購買甲型智能設(shè)備花費(fèi)360萬元,購買乙型智能設(shè)備花費(fèi)480萬元,購買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價和為140萬元.
(1)求甲乙兩種智能設(shè)備單價;
(2)垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的40%,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多10元,調(diào)查發(fā)現(xiàn):若燃料棒售價為每噸200元,平均每天可售出350噸,而當(dāng)銷售價每降低1元,平均每天可多售出5噸,但售價在每噸200元基礎(chǔ)上降價幅度不超過7%,
①垃圾處理廠想使這種燃料棒的銷售利潤平均每天達(dá)到36080元,求每噸燃料棒售價應(yīng)為多少元?
②每噸燃料棒售價應(yīng)為多少元時,這種燃料棒平均每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知平行四邊形ABCD,連接AF,CE、AF平分交BC于點(diǎn)F,CE平分交AD于點(diǎn)E.
(1)如圖1,求證:四邊形AFCE為平行四邊形;
(2)如圖2,連接BD,分別交AF、CE于G、H,若,在不添加其他輔助線的情況下,直接找出圖中面積為平行四邊形ABCD面積的的三角形或四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加學(xué)校舉行的傳統(tǒng)文化知識競賽,某班進(jìn)行了四次模擬訓(xùn)練,將成績優(yōu)秀的人數(shù)和優(yōu)秀率繪制成如下兩個不完整的統(tǒng)計(jì)圖:
(1)該班總?cè)藬?shù)是 ;
(2)根據(jù)計(jì)算,請你補(bǔ)全兩個統(tǒng)計(jì)圖;
(3)觀察補(bǔ)全后的統(tǒng)計(jì)圖,寫出一條你發(fā)現(xiàn)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△BED都是等腰直角三角形,∠ABC=∠DBE=90°,AD,CE相交于點(diǎn)G
(1)求證:△ABD≌△CBE;
(2)求證:AD⊥CE;
(3)連接AE,CD,若AE=CD=5,求△ABC和△BED的面積之和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com