【題目】如圖,在中,,,點(diǎn)從點(diǎn)沿向點(diǎn)的速度運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)沿向點(diǎn)的速度運(yùn)動(dòng)(點(diǎn)運(yùn)動(dòng)到點(diǎn)停止),在運(yùn)動(dòng)的過程中,四邊形的面積的最小值為__________

【答案】15

【解析】

RtABC中,利用勾股定理可得出AC=6cm,設(shè)運(yùn)動(dòng)時(shí)間為t0≤t≤4),則PC=6-tcm,CQ=2tcm,利用分割圖形求面積法可得出S四邊形PABQ=t2-6t+24,利用配方法即可求出四邊形PABQ的面積最小值,此題得解.

RtABC中,∠C=90°AB=10cm,BC=8cm
AC==6cm
設(shè)運(yùn)動(dòng)時(shí)間為t0≤t≤4),則PC=6-tcm,CQ=2tcm
S四邊形PABQ=SABC-SCPQ=ACBC-PCCQ=×6×8-6-t×2t=t2-6t+24=t-32+15,
∴當(dāng)t=3時(shí),四邊形PABQ的面積取最小值,最小值為15
故答案為15

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長(zhǎng)為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線于點(diǎn)H,連接CH.

(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;

(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線DC,DA上運(yùn)動(dòng)時(shí),連接DH,過點(diǎn)D作直線DH的垂線,交直線BF于點(diǎn)K,連接CK,請(qǐng)直接寫出線段CK長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時(shí),水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是拋物線 y=ax+bx+c 的一部分,其對(duì)稱軸為直線 x=2,若其與 x 軸的一個(gè)交點(diǎn)為(5,0),則由圖象可知,不等式 ax+bx+c<0 的解集是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在中,,點(diǎn)上,以為半徑的⊙,的垂直平分線交,交,連接

1)求證:是⊙的切線;

2)若,,且,求⊙的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,弦為半圓弧的中點(diǎn),連,的平分線交于點(diǎn).

1)求證:;

2)直接寫出的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若干個(gè)全等的正五邊形排成環(huán)狀,圖中所示的是前3個(gè)正五邊形,要完成這一圓環(huán)還需正五邊形的個(gè)數(shù)為( 。

A. 10 B. 9 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加快新舊動(dòng)能轉(zhuǎn)換,提高公司經(jīng)濟(jì)效益,某公司決定對(duì)近期研發(fā)出的一種電子產(chǎn)品進(jìn)行降價(jià)促銷,使生產(chǎn)的電子產(chǎn)品能夠及時(shí)售出,根據(jù)市場(chǎng)調(diào)查:這種電子產(chǎn)品銷售單價(jià)定為200元時(shí),每天可售出300個(gè);若銷售單價(jià)每降低1元,每天可多售出5個(gè).已知每個(gè)電子產(chǎn)品的固定成本為100元.

1)設(shè)銷售單價(jià)降低了元,用含的代數(shù)式表示降價(jià)后每天可售出的個(gè)數(shù)是

2)問這種電子產(chǎn)品降價(jià)后得銷售單價(jià)為多少元時(shí),公司每天可獲利32000元?

查看答案和解析>>

同步練習(xí)冊(cè)答案