【題目】如圖,平面直角坐標(biāo)系中,分別以點(diǎn)A (﹣2,3),B(3,4)為圓心,以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則PM+PN的最小值等于( 。
A.B.+3C.﹣3D.3
【答案】C
【解析】
作⊙A關(guān)于x軸的對(duì)稱(chēng)⊙ ,交⊙于點(diǎn)M,連接交⊙B于點(diǎn)N,交x軸于P,如圖,根據(jù)兩點(diǎn)之間線段最短得到此時(shí)PM+PN最小,再利用對(duì)稱(chēng)確定的坐標(biāo),接著利用兩點(diǎn)間的距離公式計(jì)算出的長(zhǎng),然后用的長(zhǎng)減去兩個(gè)圓的半徑即可得到MN的長(zhǎng),從而得到PM+PN的最小值.
解:作⊙A關(guān)于x軸的對(duì)稱(chēng)⊙ ,交⊙于點(diǎn)M,連接交⊙B于點(diǎn)N,交x軸于P,則此時(shí)PM+PN最小,
∵點(diǎn)A坐標(biāo)(﹣2,3),
∴點(diǎn)A′坐標(biāo)(﹣2,﹣3),
∵點(diǎn)B(3,4),
∴,
∴,
∴PM+PN的最小值為.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9m的B處安置高為1.5m的測(cè)角儀AB,在A處測(cè)得電線桿上C處的仰角為30°,求拉線CE的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若干名工人某天生產(chǎn)同一種玩具,生產(chǎn)的玩具數(shù)整理成條形圖(如圖所示).則他們生產(chǎn)的玩具數(shù)的平均數(shù)、中位數(shù)、眾數(shù)分別為( )
A.5,5,4 B.5,5,5
C.5,4,5 D.5,4,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在A的正東方向有一港口B.某巡邏艇從A沿著北偏東55°方向巡邏,到達(dá)C時(shí)接到命令,立刻從C沿南偏東60°方向以20海里/小時(shí)的速度航行,從C到B航行了3小時(shí).求A,B間的距離(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某運(yùn)輸公司現(xiàn)將一批152噸的貨物運(yùn)往A,B兩地,若用大小貨車(chē)15輛,則恰好能一次性運(yùn)完這批貨.已知這兩種大小貨車(chē)的載貨能力分別為12噸/輛和8噸/輛,其運(yùn)往A,B兩地的運(yùn)費(fèi)如下表所示:
目的地(車(chē)型) | A地(元/輛) | B地(元/輛) |
大貨車(chē) | 800 | 900 |
小貨車(chē) | 400 | 600 |
(1)求這15輛車(chē)中大小貨車(chē)各多少輛.(用二元一次方程組解答)
(2)現(xiàn)安排其中的10輛貨車(chē)前往A地,其余貨車(chē)前往B地,設(shè)前往A地的大貨車(chē)為x輛,前往A,B兩地總費(fèi)用為w元,試求w與x的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】歐幾里得在《幾何原本》中,記載了用圖解法解方程的方法,類(lèi)似地可以用折紙的方法求方程的一個(gè)正根。下面是甲、乙兩位同學(xué)的做法:甲:如圖1,裁一張邊長(zhǎng)為1的正方形的紙片,先折出的中點(diǎn),再折出線段,然后通過(guò)折疊使落在線段上,折出點(diǎn)的新位置,因而,類(lèi)似地,在上折出點(diǎn)使。此時(shí),的長(zhǎng)度可以用來(lái)表示方程的一個(gè)正根;乙:如圖2,裁一張邊長(zhǎng)為1的正方形的紙片,先折出的中點(diǎn),再折出線段N,然后通過(guò)沿線段折疊使落在線段上,折出點(diǎn)的新位置,因而。此時(shí),的長(zhǎng)度可以用來(lái)表示方程的一個(gè)正根;甲、乙兩人的做法和結(jié)果( )。
A.甲對(duì),乙錯(cuò)B.乙對(duì),甲錯(cuò)C.甲乙都對(duì)D.甲乙都錯(cuò)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線經(jīng)過(guò)點(diǎn)A(-1,0)、B(4,0),與y軸交于點(diǎn)C(0,4).
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P為直線BC上方拋物線的一點(diǎn),分別連接PB、PC,若直線BC恰好平分四邊形COBP的面積,求P點(diǎn)坐標(biāo);
(3)在(2)的條件下,是否在該拋物線上存在一點(diǎn)Q,該拋物線對(duì)稱(chēng)軸上存在一點(diǎn)N,使得以A、P、Q、N為頂點(diǎn)的四邊形為平行四邊形?若存在,求出Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,,點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),知道它們都到達(dá)點(diǎn)為止.若的面積為,點(diǎn)的運(yùn)動(dòng)時(shí)間為,則與的函數(shù)圖象是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com