【題目】探究:如圖①,在四邊形中,,,于點(diǎn).若,求四邊形的面積.
應(yīng)用:如圖②,在四邊形中,,,于點(diǎn).若,,,則四邊形的面積為________.
【答案】
【解析】
探究:過點(diǎn)A作AF⊥CB,交CB的延長(zhǎng)線于點(diǎn)F,先判定四邊形AFCE為矩形,根據(jù)矩形的四個(gè)角都是直角可得∠FAE=90°,然后利用同角的余角相等求出∠FAB=∠EAD,再利用“角角邊”證明△AFB和△AED全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AE=AF,從而得到四邊形AFCE是正方形,然后根據(jù)正方形的面積公式列計(jì)算即可得解;
應(yīng)用:過點(diǎn)A作AF⊥CD交CD的延長(zhǎng)線于F,連接AC,根據(jù)同角的補(bǔ)角相等可得∠ABC=∠ADF,然后利用“角角邊”證明△ABE和△ADF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AF=AE,再根據(jù)S四邊形ABCD=S△ABC+S△ACD列式計(jì)算即可得解.
解:探究:如圖①,過點(diǎn)A作AF⊥CB,交CB的延長(zhǎng)線于點(diǎn)F,
∵AE⊥CD,∠BCD=90°,
∴四邊形AFCE為矩形,
∴∠FAE=90°,
∴∠FAB+∠BAE=90°,
∵∠EAD+∠BAE=90°,
∴∠FAB=∠EAD,
∵在△AFB和△AED中,
,
∴△AFB≌△AED(AAS),
∴AF=AE,
∴四邊形AFCE為正方形,
∴S四邊形ABCD=S正方形AFCE=AE2=102=100;
應(yīng)用:如圖,過點(diǎn)A作AF⊥CD交CD的延長(zhǎng)線于F,連接AC,
則∠ADF+∠ADC=180°,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADF,
∵在△ABE和△ADF中,
,
∴△ABE≌△ADF(AAS),
∴AF=AE=19,
∴S四邊形ABCD=S△ABC+S△ACD
=BCAE+CDAF
=×10×19+×6×19
=95+57
=152.
故答案為:152.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖矩形的對(duì)角線、交于點(diǎn),過點(diǎn)作,且,連接,判斷四邊形的形狀并說明理由.
(2)如果題目中的矩形變?yōu)榱庑,結(jié)論應(yīng)變?yōu)槭裁?說明理由.
(3)如果題目中的矩形變?yōu)檎叫危Y(jié)論又應(yīng)變?yōu)槭裁?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下文字并解決問題:對(duì)于形如這樣的二次三項(xiàng)式,我們可以直接用公式法把它分解成的形式,但對(duì)于二次三項(xiàng)式,就不能直接用公式法分解了.此時(shí),我們可以在中間先加上一項(xiàng),使它與的和構(gòu)成一個(gè)完全平方式,然后再減去,則整個(gè)多項(xiàng)式的值不變.即:,像這樣,把一個(gè)二次三項(xiàng)式變成含有完全平方式的形式的方法,叫做配方法.
利用“配方法”因式分解:
如果,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn),過作直線,設(shè)交的平分線于點(diǎn),交的外角平分線于點(diǎn).
探究:線段與的數(shù)量關(guān)系并加以證明;
當(dāng)點(diǎn)運(yùn)動(dòng)到何處,且滿足什么條件時(shí),四邊形是正方形?
當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),四邊形會(huì)是菱形嗎?若是,請(qǐng)證明,若不是,則說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=x+5與x軸交于點(diǎn)A,直線y=﹣x+b與x軸交于點(diǎn)B(1,0),且這兩條直線交于點(diǎn)C.
(1)求直線BC的解析式和點(diǎn)C的坐標(biāo);
(2)直接寫出關(guān)于x的不等式x+5>﹣x+b的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】尺規(guī)作圖與說理(要求保留作圖痕跡,不寫作法.)如圖,在Rt△ABC中,∠ACB=90°
(1)過點(diǎn)C作AB的垂線CD,交AB于點(diǎn)D;
(2)作∠ABC的平分線BE交AC于點(diǎn)E,交CD于點(diǎn)F;
(3)觀察線段CE與CF有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題解決)
(1)如圖①,在等邊△ABC中,點(diǎn)M是BC邊上的任意一點(diǎn)(不含端點(diǎn)B,C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.試判斷∠ABC與∠ACN的大小關(guān)系.并說明理由.
(類比探究)
(2)如圖②在等邊△ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中結(jié)論還成立嗎?請(qǐng)說明理由.
(拓展延伸)
(3)若點(diǎn)M是CB延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)B),請(qǐng)直接寫出∠ACN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以正方形的四條邊為邊,向其內(nèi)部作等邊三角形,得到、、、,連接、、、,若,則四邊形的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,BE⊥AC,垂足為E,AF平分∠BAC,交BE于F,點(diǎn)D在AC上,且AD=AB.
(1)求證:DF=BF;
(2)求證:∠ADF=∠C.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com