【題目】如圖,O的直徑AB長為10,弦AC長為6,∠ACB的平分線交O于點D,則BC的長為_____CD的長_____

【答案】8 7

【解析】

根據(jù)圓周角定理得到∠ACB90°,然后利用勾股定理可計算出BC,根據(jù)圓周角定理得到∠ADB90°,再根據(jù)角平分線定義得∠ACD=∠BCD,則ADBD,于是可判斷△ABD為等腰直角三角形,然后根據(jù)等腰直角三角形的性質(zhì)求出BD,作BHCDH,如圖,證明△BCH為等腰直角三角形得到BHCHBC4,再利用勾股定理計算出DH3,從而計算CH+DH即可.

解:∵ABO的直徑,

∴∠ACB90°,

RtACB中,AB10AC6

BC8;

ABO的直徑,

∴∠ADB90°,

∵∠ACB的平分線交OD

∴∠ACD=∠BCD,

ADBD,

∴△ABD為等腰直角三角形,

BDAB5

BHCDH,如圖,

∵∠BCH45°,

∴△BCH為等腰直角三角形,

BHCHBC4

RtBDH中,DH3,

CDCH+DH4+37,

故答案為:8,7

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l上有兩動點C、D,點A、點B在直線l同側(cè),且A點與B點分別到l的距離為a米和b米(即圖中AA′=a米,BB′=b米),且A′B′=c米,動點CD之間的距離總為S米,使CA的距離與DB的距離之和最小,則AC+BD的最小值為( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大課間到了,小明和小歡兩人打算從教室勻速跑到600米外的操場做課間操,剛出發(fā)時小明就發(fā)現(xiàn)鞋帶松了,停下來系鞋帶,小歡則直接前往操場,小明系好鞋帶后立即沿同一路開始追趕小歡,小明在途中追上小歡后繼續(xù)前行,小明到達操場時課間操還沒有開始,于是小明站在操場等待,小歡繼續(xù)前往操場,設小明和小歡兩人想距s(米),小歡行走的時間為t(分鐘),s關于t的函數(shù)的部分圖象如圖所示,當兩人第三次相距60米時,小明離操場還有_____米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知點P(﹣2,1)關于y軸的對稱點P,點Tt,0)是x軸上的一個動點,當PTO是等腰三角形時,t的值是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O為矩形ABCD的對稱中心,AB5cm,BC6cm,點EFG分別從ABC三點同時出發(fā),沿矩形的邊按逆時針方向勻速運動,點E的運動速度為1cm/s,點F的運動速度為3cm/s,點G的運動速度為1.5cm/s,當點F到達點C(即點F與點C重合)時,三個點隨之停止運動.在運動過程中,EBF關于直線EF的對稱圖形是EBF.設點EFG運動的時間為t(單位:s).

1)當t等于多少s時,四邊形EBFB為正方形;

2)若以點E、B、F為頂點的三角形與以點F,CG為頂點的三角形相似,求t的值;

3)是否存在實數(shù)t,使得點B與點O重合?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,小明家住在30米高的A樓里,小麗家住在B樓里,B樓坐落在A樓的正北面,已知當?shù)囟林形?/span>12時太陽光線與水平面的夾角為30°

1)如果A、B兩樓相距16米,那么A樓落在B樓上的影子有多長?

2)如果A樓的影子剛好不落在B樓上,那么兩樓的距離應是多少米?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1x軸于點(10),直線l2x軸于點(20),直線l3x軸于點(3,0),……直線lnx軸于點(n,0).函數(shù)yx的圖象與直線l1、l2l3、…、ln分別交于點A1A2、A3、…、An;函數(shù)y2x的圖象與直線l1、l2、l3、…、ln分別交于點B1、B2、B3、…、Bn.如果△OA1B1的面積記作S1,四邊形A1A2B2B1的面積記作S2,四邊形A2A3B3B2的面積記作S3,…,四邊形An1AnBnBn1的面積記作Sn,那么S2018=( 。

A. 2017.5B. 2018C. 2018.5D. 2019

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸交于點,交軸于點,直線過點軸交于點,與拋物線的另一個交點為,作軸于點.設點是直線上方的拋物線上一動點(不與點、重合),過點軸的平行線,交直線于點,作于點.

1)填空:__________,__________,__________

2)探究:是否存在這樣的點,使四邊形是平行四邊形?若存在,請求出點的坐標;若不存在,請說明理由;

3)設的周長為,點的橫坐標為,求的函數(shù)關系式,并求出的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線分別交軸、軸于點A、B,拋物線過A,B兩點,點P是線段AB上一動點,過點P作PC 軸于點C,交拋物線于點D.

(1)若拋物線的解析式為,設其頂點為M,其對稱軸交AB于點N.

①求點M、N的坐標;

②是否存在點P,使四邊形MNPD為菱形?并說明理由;

(2)當點P的橫坐標為1時,是否存在這樣的拋物線,使得以B、P、D為頂點的三角形與AOB相似?若存在,求出滿足條件的拋物線的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案