【題目】如圖,已知直線(xiàn)分別交軸、軸于點(diǎn)A、B,拋物線(xiàn)過(guò)A,B兩點(diǎn),點(diǎn)P是線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PC 軸于點(diǎn)C,交拋物線(xiàn)于點(diǎn)D.
(1)若拋物線(xiàn)的解析式為,設(shè)其頂點(diǎn)為M,其對(duì)稱(chēng)軸交AB于點(diǎn)N.
①求點(diǎn)M、N的坐標(biāo);
②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;
(2)當(dāng)點(diǎn)P的橫坐標(biāo)為1時(shí),是否存在這樣的拋物線(xiàn),使得以B、P、D為頂點(diǎn)的三角形與AOB相似?若存在,求出滿(mǎn)足條件的拋物線(xiàn)的解析式;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)① ②答案見(jiàn)解析 (2)存在,或
【解析】
(1)①如圖1,把拋物線(xiàn)解析式配成頂點(diǎn)式可得到頂點(diǎn)為的坐標(biāo)為,,然后計(jì)算自變量為對(duì)應(yīng)的一次函數(shù)值可得到點(diǎn)坐標(biāo);
②易得,設(shè)點(diǎn)坐標(biāo)為,則,則,由于,根據(jù)平行四邊形的判定方法,當(dāng)時(shí),四邊形為平行四邊形,即,求出得到此時(shí)點(diǎn)坐標(biāo)為,,接著計(jì)算出,然后比較與的大小關(guān)系可判斷平行四邊形是否為菱形;
(2)如圖2,利用勾股定理計(jì)算出,再表示出,則可計(jì)算出,接著表示出拋物線(xiàn)解析式為,則可用表示出點(diǎn)坐標(biāo)為,所以,由于,根據(jù)相似三角形的判定方法,當(dāng)時(shí),,即;當(dāng)時(shí),,即,然后利用比例性質(zhì)分別求出的值,從而得到對(duì)應(yīng)的拋物線(xiàn)的解析式.
(1)①如圖1,
,
頂點(diǎn)為的坐標(biāo)為,,
當(dāng)時(shí),,則點(diǎn)坐標(biāo)為,;
②不存在.
理由如下:
,
設(shè)點(diǎn)坐標(biāo)為,則,
,
,
當(dāng)時(shí),四邊形為平行四邊形,即,解得(舍去),,此時(shí)點(diǎn)坐標(biāo)為,,
,
,
平行四邊形不為菱形,
不存在點(diǎn),使四邊形為菱形;
(2)存在.
如圖2,,,則,
當(dāng)時(shí),,則,
,
設(shè)拋物線(xiàn)的解析式為,
把代入得,解得,
拋物線(xiàn)的解析式為,
當(dāng)時(shí),,則,
,
,
,
當(dāng)時(shí),,即,解得,此時(shí)拋物線(xiàn)解析式為;
當(dāng)時(shí),,即,解得,此時(shí)拋物線(xiàn)解析式為;
綜上所述,滿(mǎn)足條件的拋物線(xiàn)的解析式為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的相交情況,關(guān)于下列結(jié)論:
①方程ax2+bx=0的兩個(gè)根為x1=0,x2=﹣4;②b﹣4a=0;③9a+3b+c<0;其中正確的結(jié)論有( )
A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,的半徑為1,A、B兩點(diǎn)坐標(biāo)分別為、已知點(diǎn)P是上的一點(diǎn),點(diǎn)Q是線(xiàn)段AB上的一點(diǎn),設(shè)的面積為S,當(dāng)為直角三角形時(shí),S的取值范圍為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,,為高線(xiàn),點(diǎn)在邊上,且,連接,,與邊相交于點(diǎn).
(1)如圖1,當(dāng)時(shí),求證:
(2)如圖2,當(dāng)時(shí),則線(xiàn)段、的數(shù)量關(guān)系為 ;
(3)如圖3,在(2)的條件下,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)后邊所在的直線(xiàn)與邊相交于點(diǎn),邊所在的直線(xiàn)與邊相交于點(diǎn),與高線(xiàn)相交于點(diǎn),若,且,求線(xiàn)段H的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過(guò)A點(diǎn)的切線(xiàn)AP與BC的延長(zhǎng)線(xiàn)交于點(diǎn)P,∠APB的平分線(xiàn)分別交AB,AC于點(diǎn)D,E,其中AE,BD(AE<BD)的長(zhǎng)是一元二次方程x2﹣5x+6=0的兩個(gè)實(shí)數(shù)根.
(1)求證:PABD=PBAE;
(2)在線(xiàn)段BC上是否存在一點(diǎn)M,使得四邊形ADME是菱形?若存在,請(qǐng)給予證明,并求其面積;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題6分)甲、乙兩人進(jìn)行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標(biāo)有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機(jī)抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機(jī)抽取一張.請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個(gè)游戲公平嗎?請(qǐng)用概率的知識(shí)加以解釋?zhuān)?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi)由極點(diǎn)、極軸和極徑組成的坐標(biāo)系叫做極坐標(biāo)系.如圖,在平面上取定一點(diǎn)O稱(chēng)為極點(diǎn);從點(diǎn)O出發(fā)引一條射線(xiàn)Ox稱(chēng)為極軸;線(xiàn)段OP的長(zhǎng)度稱(chēng)為極徑.點(diǎn)P的極坐標(biāo)就可以用線(xiàn)段OP的長(zhǎng)度以及從Ox轉(zhuǎn)動(dòng)到OP的角度(規(guī)定逆時(shí)針?lè)较蜣D(zhuǎn)動(dòng)角度為正)來(lái)確定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,則點(diǎn)P關(guān)于點(diǎn)O成中心對(duì)稱(chēng)的點(diǎn)Q的極坐標(biāo)表示不正確的是( )
A. Q(3,240°) B. Q(3,﹣120°) C. Q(3,600°) D. Q(3,﹣500°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列兩則材料,回答問(wèn)題,
材料一:定義直線(xiàn)y=ax+b與直線(xiàn)y=bx+a互為“互助直線(xiàn)”,例如,直線(xiàn)y=x+4與直y=4x+1互為“互助直線(xiàn)“
材料二:對(duì)于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1)、P2(x2,y2),P1、P2兩點(diǎn)間的直角距離d(P1,P2)=|x1﹣x2|+|y1﹣y2|.例如:Q1(﹣3,1)、Q2(2,4)兩點(diǎn)間的直角距離為d(Q1,Q2)=|﹣3﹣2|+|1﹣4|=8
設(shè)P0(x0,y0)為一個(gè)定點(diǎn),Q(x,y)是直線(xiàn)y=ax+b上的動(dòng)點(diǎn),我們把d(P0,Q)的最小值叫做P0到直線(xiàn)y=ax+b的直角距離.
(1)計(jì)算S(﹣1,6),T(﹣2,3)兩點(diǎn)間的直角距離d(S,T)= ,直線(xiàn)y=2x+3上的一點(diǎn)H(a,b)又是它的“互助直線(xiàn)”上的點(diǎn),求點(diǎn)H的坐標(biāo).
(2)對(duì)于直線(xiàn)y=ax+b上的任意一點(diǎn)M(m,n),都有點(diǎn)N(3m,2m﹣3n)在它的“互助直線(xiàn)”上,試求點(diǎn)L(5,﹣)到直線(xiàn)y=ax+b的直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有這樣一個(gè)題目:
按照給定的計(jì)算程序,確定使代數(shù)式n(n+2)大于2000的n的最小正整數(shù)值.想一想,怎樣迅速找到這個(gè)n值,請(qǐng)與同學(xué)們交流你的體會(huì).
小亮嘗試計(jì)算了幾組n和n(n+2)的對(duì)應(yīng)值如下表:
n | 50 | 40 | |
n(n+2) | 2600 | 1680 |
(1)請(qǐng)你繼續(xù)小亮的嘗試,再算幾組填在上表中(幾組隨意,自己畫(huà)格),并寫(xiě)出滿(mǎn)足題目要求的n的值;
(2)結(jié)合上述過(guò)程,對(duì)于“怎樣迅速找到n值”這個(gè)問(wèn)題,說(shuō)說(shuō)你的想法.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com