【題目】已知不等臂蹺蹺板AB長為3,蹺蹺板AB的支撐點O到地面上的點H的距高OH=0.6米。當蹺蹺板AB的一個端點A碰到地面時,AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.

1)當AB的另一個端點B碰到地面時(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?

2)當AB的另一個端點B碰到地面時(如右圖),A到直線BH的距離是多少米?

【答案】1;(21

【解析】

1)先根據(jù)作圖中求出OB的長度,再利用即可

2)過AACBH,垂足為點C.AC長即為所求.利用AB即可求

解:(1) ,OH=0.6

OA=1.2

AB=3m,AO=1.2m

OB=3-1.2=1.8m

RtBOH中,

(2)AACBH,垂足為點C.AC長即為所求.

AC=AB=3×=1m.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l與O相離,OAl于點A,交O于點P,點B是O上一點,連接BP并延長,交直線l于點C,使得AB=AC.

(1)求證:AB是O的切線;

(2)若PC=,OA=3,求O的半徑和線段PB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=2,A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為【 】

 A.1 B. C. 2 D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸交于點,點,與y軸交于點C,且過點.點P、Q是拋物線上的動點.

(1)求拋物線的解析式;

(2)當點P在直線OD下方時,求面積的最大值.

(3)直線OQ與線段BC相交于點E,當相似時,求點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數(shù)根.

(1)求m的取值范圍;

(2)若m為非負整數(shù),且該方程的根都是無理數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中有兩點,若二次函數(shù)的圖像與線段AB只有一個交點,則( 。

A.的值可以是B.的值可以是

C.的值不可能是-1.2D.的值不可能是-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,點D、E位于AB兩側的半圓上,射線DCO于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DEAB交于點P,再連接FP、FB,且∠AED45°.

1)求證:CDAB;

2)填空:

當∠DAE   時,四邊形ADFP是菱形;

當∠DAE   時,四邊形BFDP是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)某學校智慧方園數(shù)學社團遇到這樣一個題目:

如圖1,在ABC中,點O在線段BC上,∠BAO=30°,OAC=75°,AO=,BO:CO=1:3,求AB的長.

經(jīng)過社團成員討論發(fā)現(xiàn),過點BBDAC,交AO的延長線于點D,通過構造ABD就可以解決問題(如圖2).

請回答:∠ADB=   °,AB=   

(2)請參考以上解決思路,解決問題:

如圖3,在四邊形ABCD中,對角線ACBD相交于點O,ACAD,AO=ABC=ACB=75°,BO:OD=1:3,求DC的長.

查看答案和解析>>

同步練習冊答案