【題目】填空:
(1)已知,△ABC中,∠C+∠A=4∠B,∠C﹣∠A=40°,則∠A= 度;∠B= 度;∠C= 度;
(2)一個多邊形的內角和與外角和之和為2160°,則這個多邊形是 邊形;
(3)在如圖的平面直角坐標系中,點A(﹣2,4),B(4,2),在x軸上取一點P,使點P到點A和點B的距離之和最。畡t點P的坐標是 .
【答案】(1)52,36,92;(2)12;(3)(2,0)
【解析】
(1)通過三角形內角和性質與已知條件聯(lián)立方程可得;
(2)多邊形的內角和公式可得;
(3)線段和差最值問題,通過“兩點之間,線段最短”.
解:(1)由題意得, ,
解得,
故答案為:52,36,92;
(2)設這個多邊形為n邊形,由題意得,
,
解得,n=12,
故答案為:12;
(3)
點B(4,2)關于x軸的對稱點B′(4,﹣2),
設直線AB′的關系式為,把A(﹣2,4) ,B′(4,﹣2) 代入得,
,
解得,k =﹣1,b =2,
∴直線AB′的關系式為y =﹣x+2,
當y=0時,﹣x+2=0,解得,x=2,
所以點P(2,0),
故答案為:(2,0).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且AB=AE,延長AB與DE的延長線交于點F.下列結論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小慧根據(jù)學習函數(shù)的經驗,對函數(shù)的圖像與性質進行了探究.下面是小慧的探究過程,請補充完整.
(l)函數(shù)的自變量的取值范圍是 ;
(2)列表,找出與的幾組對應值.
其中, ;
(3)在平面直角坐標系中,描出以上表中各對對應值為坐標的點,并畫出該函數(shù)的圖像;
(4)寫出該函數(shù)的一條性質: .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm,如果點P從點B出發(fā)沿BA方向向點A勻速運動,同時點Q由點A出發(fā)沿AC方向向點C勻速運動,它們的速度均為1cm/s,連接PQ,設運動時間為t(s)(0<t<4).
(1)當t為何值時,PQ∥BC;
(2)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由;
(3)如圖乙,連接PC,將△PQC沿QC翻折,得到四邊形PQP′C,當四邊形PQP′C為菱形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先閱讀下列的解題過程,然后回答下列問題.
例:解絕對值方程:.
解:討論:①當時,原方程可化為,它的解是;
②當時,原方程可化為,它的解是.
原方程的解為或.
(1)依例題的解法,方程算的解是_______;
(2)嘗試解絕對值方程:;
(3)在理解絕對值方程解法的基礎上,解方程:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個中轉站E,使得C、D兩村到E站的距離相等.求E應建在距A多遠處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖所示,在平面直角坐標系中,函數(shù)(,是常數(shù))的圖象經過點、點,其中,直線交軸于點.過點作軸的垂線,垂足為,過點作軸的垂線,垂足為,與相交于點,連接.
(1)若的面積為,求點的坐標;
(2)求證:四邊形為平行四邊形;
(3)若,求直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于拋物線.
(1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關于x的一元二次方程(t為實數(shù))在<x<的范圍內有解,則t的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com