【題目】如圖,已知數(shù)軸上有兩點(diǎn),它們的對(duì)應(yīng)數(shù)分別是,其中
(1)在左側(cè)作線段,在的右側(cè)作線段(要求尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)若點(diǎn)對(duì)應(yīng)的數(shù)是,點(diǎn)對(duì)應(yīng)的數(shù)是,且,求的值
(3)在(2)的條件下,設(shè)點(diǎn)是的中點(diǎn),是數(shù)軸上一點(diǎn),且,請(qǐng)直接寫出的長(zhǎng)
【答案】(1)見(jiàn)解析;(2)c=-68;d=92;(3)28或
【解析】
(1)首先畫射線,在射線上截取AC=AB,再在射線BA上截取BD=3AB;
(2)由題意可得AC=80,AD=80,據(jù)此解答即可;
(3)分情況討論:①點(diǎn)N在線段CD上;②點(diǎn)N在線段CD的延長(zhǎng)線上分別進(jìn)行解答即可.
(1)解:如圖,線段為所求的線段
(2)因?yàn)?/span>
;
(3)分情況討論:
①點(diǎn)N在線段CD上,
由(2)得CD=92(68)=160,點(diǎn)B對(duì)應(yīng)的數(shù)為1240=28,
∴BD=92(28)=120,
∵點(diǎn)M是BD的中點(diǎn),
∴點(diǎn)M對(duì)應(yīng)的數(shù)為9260=32,
∵CN=4DN,
∴DN=CD=32,
∴點(diǎn)N對(duì)應(yīng)的數(shù)為9232=60,
∴MN=6032=28;
②點(diǎn)N在線段CD的延長(zhǎng)線上,
∵CN=4DN,
∴DN=CD=,
∴點(diǎn)N對(duì)應(yīng)的數(shù)為92+=,
∴MN=32=.
故的長(zhǎng)為28或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A=30°,BC=1,點(diǎn)D在邊AC上,且∠DBC=45°,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A.為了解一批燈泡的使用壽命,宜采用普查方式
B.擲兩枚質(zhì)地均勻的硬幣,兩枚硬幣都是正面朝上這一事件發(fā)生的概率為
C.擲一枚質(zhì)地均勻的正方體骰子,骰子停止轉(zhuǎn)動(dòng)后,5點(diǎn)朝上是必然事件
D.甲乙兩人在相同條件下各射擊10次,他們成績(jī)的平均數(shù)相同,方差分別是S甲2=0.4,S乙2=0.6,則甲的射擊成績(jī)較穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徵是我國(guó)古代最杰出的數(shù)學(xué)家之一,他在《九算術(shù)圓田術(shù))中用“割圓術(shù)”證明了圓面積的精確公式,并給出了計(jì)算圓周率的科學(xué)方法(注:圓周率=圓的周長(zhǎng)與該圓直徑的比值)“割圓術(shù)”就是以“圓內(nèi)接正多邊形的面積”,來(lái)無(wú)限逼近“圓面積”,劉徽形容他的“割圓術(shù)”說(shuō):割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓合體,而無(wú)所失矣.劉徽計(jì)算圓周率是從正六邊形開(kāi)始的,易知圓的內(nèi)接正六邊形可分為六個(gè)全等的正三角形,每個(gè)三角形的邊長(zhǎng)均為圓的半徑R.此時(shí)圓內(nèi)接正六邊形的周長(zhǎng)為6R,如果將圓內(nèi)接正六邊形的周長(zhǎng)等同于圓的周長(zhǎng),可得圓周率為3.當(dāng)正十二邊形內(nèi)接于圓時(shí),如果按照上述方法計(jì)算,可得圓周率為_____.(參考數(shù)據(jù):sinl5°=0.26)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】尺規(guī)作圖:過(guò)直線外一點(diǎn)作已知直線的垂線,已知:如圖(1),直線及外一點(diǎn),求作的垂線,使它經(jīng)過(guò)點(diǎn),小紅的做法如下:
①在直線上任取一點(diǎn)B,連接
②以為圓心,長(zhǎng)為半徑作弧,交直線于點(diǎn);
③分別以為圓心, 長(zhǎng)為半徑作弧,兩弧相交于點(diǎn);
④作直線,直線即為所求如圖(2),小紅的做題依據(jù)是( )
A.四條邊都相等的四邊形是菱形;菱形的對(duì)角線互相垂直
B.直徑所對(duì)的圓周角是直角
C.直線外一點(diǎn)到這條直線上垂線段最短
D.同圓或等圓中半徑相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】截至北京時(shí)間2020年3月26日11:30,全球新冠肺炎確診病例突破47萬(wàn)例,已有60個(gè)國(guó)家宣布進(jìn)入緊急狀態(tài),國(guó)外較多醫(yī)護(hù)人員不得不重復(fù)使用一次性口罩和防護(hù)裝備.深圳海王星辰福田某藥店購(gòu)進(jìn)A、B兩種一次性口罩共1500個(gè),已知購(gòu)進(jìn)A種一次性口罩和B種一次性口罩的費(fèi)用分別為3000元和2000元,且A種一次性口罩的單價(jià)比B種一次性口罩單價(jià)多1元,求A、B兩種一次性口罩的單價(jià)各是多少?設(shè)A種一次性口罩單價(jià)為x元,根據(jù)題意,列方程正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)如圖9給出的數(shù)軸,解答下面的問(wèn)題:
(1)請(qǐng)你根據(jù)圖中兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)_____ ;
(2)觀察數(shù)軸,與點(diǎn)的距離為的點(diǎn)表示的數(shù)是:
(3)若將數(shù)軸折疊,使得與表示的點(diǎn)重合,則點(diǎn)與數(shù) 表示的點(diǎn)重合;
(4)若數(shù)軸上兩點(diǎn)之間的距離為(在的左側(cè)),且兩點(diǎn)經(jīng)過(guò)(3)中折疊后互重合,則兩點(diǎn)表示的數(shù)分別是: ;:
(5)若數(shù)軸上兩點(diǎn)之間的距離為(在的左側(cè),且兩點(diǎn)經(jīng)過(guò)中折疊后互重合,則兩點(diǎn)表示的數(shù)分別是: ;:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn),分別是,的中點(diǎn),點(diǎn)為射線上一動(dòng)點(diǎn),連結(jié),作交射線于點(diǎn).
(1)當(dāng)點(diǎn)在線段上時(shí),求與的大小關(guān)系;
(2)當(dāng)等于多少時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過(guò)點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;理由;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請(qǐng)說(shuō)明理由;
(3)當(dāng)∠ABC=α時(shí),請(qǐng)直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com