【題目】如圖,在中,,.將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一定角度后得到,其中點(diǎn)的對(duì)應(yīng)點(diǎn)落在邊上,則圖中陰影部分的面積是_____

【答案】π

【解析】

由旋轉(zhuǎn)可得CB=C′B,根據(jù)∠C=60°可得BCC′為等邊三角形、BCD為直角三角形,繼而可得旋轉(zhuǎn)角∠ABA′=DBD′=CBC′=60°BD=2 ,最后根據(jù)陰影部分的面積=S扇形BAA′-S扇形BDD′計(jì)算可得.

如圖,連接BD、BD′

A′BC′D′是由ABCD繞點(diǎn)B旋轉(zhuǎn)得到的,
∴∠ABA′=CBC′=DBD′AB=A′B,CB=C′B,BD=BD′
∵∠BCD=60°,AB=2BC=4,
BC′=BC=2=AB=CD,
∴△BCD是直角三角形,∠ABA′=CBC′=DBD′=60°,
BD=,
則陰影部分的面積=S扇形BAA′-S扇形BDD′=π

故答案為:π

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),直線軸交于點(diǎn),與軸交于點(diǎn),直線軸交于點(diǎn),且點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱.

1)求直線的解析式;

2)點(diǎn)為線段上一點(diǎn),點(diǎn)為線段上一點(diǎn),,連接,設(shè)點(diǎn)的橫坐標(biāo)為,的面積為),求之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);

3)在(2)的條件下,當(dāng)取最大值時(shí),若點(diǎn)是平面內(nèi)的一點(diǎn),在直線上是否存在點(diǎn),使得以點(diǎn),為頂點(diǎn)的四邊形是菱形,若存在,請(qǐng)直接寫出符合條件的點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的一元二次方程有兩個(gè)不相等的實(shí)數(shù)根.

1)求的取值范圍;

2)若為非負(fù)整數(shù),且該方程的根都是有理數(shù),求出該方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y關(guān)于x的二次函數(shù)y=x-bx+b+b-5的圖象與x軸有兩個(gè)公共點(diǎn).

1)求b的取值范圍;

2)若b取滿足條件的最大整數(shù)值,當(dāng)m≤x≤時(shí),函數(shù)y的取值范圍是n≤y≤6-2m,求m,n的值;

3)若在自變量x的值滿足b≤x≤b+3的情況下,對(duì)應(yīng)函數(shù)y的最小值為,求此時(shí)二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)證明】

如圖1,點(diǎn)E,F分別在正方形ABCD的邊BCCD上,∠EAF=45°,試判斷BE,EFFD之間的數(shù)量關(guān)系.

小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,通過證明AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD

【類比引申】

1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CB、CD的延長(zhǎng)線上,∠EAF=45°,連接EF,請(qǐng)根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BEDF之間的數(shù)量關(guān)系,并證明;

【聯(lián)想拓展】

2)如圖3,如圖,∠BAC=90°,AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3EF=5,求CF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校九年級(jí)男生1000米跑的水平,從中隨機(jī)抽取部分男生進(jìn)行測(cè)試,并把測(cè)試成績(jī)分為D、C、B、A四個(gè)等次繪制成如圖所示的不完整的統(tǒng)計(jì)圖,請(qǐng)你依圖解答下列問題:

(1)a=   ,b=   ,c=   

(2)扇形統(tǒng)計(jì)圖中表示C等次的扇形所對(duì)的圓心角的度數(shù)為   度;

(3)學(xué)校決定從A等次的甲、乙、丙、丁四名男生中,隨機(jī)選取兩名男生參加全市中學(xué)生1000米跑比賽,請(qǐng)用列表法或畫樹狀圖法,求甲、乙兩名男生同時(shí)被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC.將△ABC沿著BC方向平移得到△DEF,其中點(diǎn)E在邊BC上,DEAC相交于點(diǎn)O.連接AE、DC、AD,當(dāng)點(diǎn)E在什么位置時(shí),四邊形AECD為矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《孫子算經(jīng)》是中國(guó)古代重要的數(shù)學(xué)著作,其中記載:“今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八。問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲、乙二人原來各有多少錢?”

查看答案和解析>>

同步練習(xí)冊(cè)答案