【題目】在七年級的一次“數(shù)學聯(lián)歡會”上,數(shù)學老師李老師出示了10張數(shù)學答題卡,答題卡背面的圖案不同:當答題卡正面是正數(shù)時,背面是一面五星紅旗;當答題卡的正面是負數(shù)時,背面是一朵牡丹花。這10張答題卡如圖所示:

請你指出這10張答題卡后面有幾面五星紅旗?有幾朵牡丹花?并寫出它們的卡片號碼。

【答案】答題卡后面是的序號為:①⑤⑥⑦⑧⑩,共6面旗幟;
答題卡后面是的序號為:②③④⑨,共4朵花.

【解析】

各項計算得到結果,即可作出判斷.

解:①(-4×-2=8
-2.8++1.9=-0.9;
0+-12.9=-12.9
--22=-4;
-0.5÷-2=0.25;
|-3|--2=3+2=5
⑦(-2×=;
=;
19-59=-0.1;
+1≥1>0,
答題卡后面是的序號為:①⑤⑥⑦⑧⑩,共6面旗幟;
答題卡后面是的序號為:②③④⑨,共4朵花.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,方格紙中的每個小方格都是邊長為1個單位長度的正方形,ABC的頂點均在格點上,在建立平面直角坐標系后,點C的坐標為(-2,-2)

1)畫出ABCy軸為對稱軸的對稱圖形,并寫出點C1的坐標;

2)以原點O為對稱中心,畫出關于原點O對稱的并寫出點C2的坐標;

3)以C2為旋轉中心,把順時針旋轉90°,得到C2A3B3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如果+n+620,求(m+n2008+m3的值

2)已知實數(shù)ab,cd,e,且ab互為倒數(shù),c,d互為相反數(shù),e的絕對值為2,求×ab++e的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國數(shù)學史上最先完成勾股定理證明的數(shù)學家是公元3世紀三國時期的趙爽,他為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成. 將圖中正方形MNKT,正方形EFGH,正方形ABCD的面積分別記為, , 則正方形EFGH的面積為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:正方形ABCD,等腰直角三角板的直角頂點落在正方形的頂點D處,使三角板繞點D旋轉.

(1)當三角板旋轉到圖1的位置時,猜想CE與AF的數(shù)量關系,并加以證明;

(2)在(1)的條件下,若DE:AE:CE= 1: :3,求∠AED的度數(shù);

(3)若BC= 4,點M是邊AB的中點,連結DM,DM與AC交于點O,當三角板的一邊DF與邊DM重合時(如圖2),若OF=,求CN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形ABCD的邊長為6cm,點F從點B出發(fā),沿射線AB方向以1cm/秒的速度移動,點E從點D出發(fā),向點A1cm/秒的速度移動(不到點A).設點EF同時出發(fā)移動t秒.

1)在點E,F移動過程中,連接CE,CF,EF,則△CEF的形狀是 ,始終保持不變;

2)如圖2,連接EF,設EFBD于點M,當t=2時,求AM的長;

3)如圖3,點G,H分別在邊AB,CD上,且GH=cm,連接EF,當EFGH的夾角為45°,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD內(nèi)的一點,且PA=1,PB=PD=,則∠APB的度數(shù)為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是直線AB上一點,OCODOM是∠BOD的角平分線,ON是∠AOC的角平分線,則∠MON的度數(shù)是_____°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠ACB90°,BCAC3,點DBC邊上一點,∠DAC30°,點EAD邊上一點,CE繞點C逆時針旋轉90°得到CF,連接DF,DF的最小值是___

查看答案和解析>>

同步練習冊答案