如圖所示,拋物線與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3).以AB為直徑作⊙M,過拋物線上一點(diǎn)P作⊙M的切線PD,切點(diǎn)為D,并與⊙M的切線AE相交于點(diǎn)E,連接DM并延長(zhǎng)交⊙M于點(diǎn)N,連接AN、AD.
(1)求拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式及拋物線的頂點(diǎn)坐標(biāo);
(2)若四邊形EAMD的面積為4
3
,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點(diǎn)P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
(1)因?yàn)閽佄锞與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),
設(shè)拋物線的函數(shù)關(guān)系式為:y=a(x+1)(x-3),
∵拋物線與y軸交于點(diǎn)C(0,-3),
∴-3=a(0+1)(0-3),
∴a=1,
所以,拋物線的函數(shù)關(guān)系式為:y=x2-2x-3,(2分)
又∵y=(x-1)2-4,
因此,拋物線的頂點(diǎn)坐標(biāo)為(1,-4);(3分)

(2)連接EM,∵EA、ED是⊙M的兩條切線,
∴EA=ED,EA⊥AM,ED⊥MD,
∴△EAM≌△EDM(HL),
又∵四邊形EAMD的面積為4
3
,
∴S△EAM=2
3

1
2
AM•AE=2
3
,
又∵AM=2,
∴AE=2
3

因此,點(diǎn)E的坐標(biāo)為E1(-1,2
3
)或E2(-1,-2
3
),(5分)
當(dāng)E點(diǎn)在第二象限時(shí),切點(diǎn)D在第一象限,
在直角三角形EAM中,tan∠EMA=
EA
AM
=
2
3
2
=
3
,
∴∠EMA=60°,
∴∠DMB=60°,
過切點(diǎn)D作DF⊥AB,垂足為點(diǎn)F,
∴MF=1,DF=
3
,
因此,切點(diǎn)D的坐標(biāo)為(2,
3
),(6分)
設(shè)直線PD的函數(shù)關(guān)系式為y=kx+b,
將E(-1,2
3
),D(2,
3
)的坐標(biāo)代入得
3
=2k+b
2
3
=-k+b
,
解之,得:
k=-
3
3
b=
5
3
3
,
所以,直線PD的函數(shù)關(guān)系式為y=-
3
3
x+
5
3
3
,(7分)
當(dāng)E點(diǎn)在第三象限時(shí),切點(diǎn)D在第四象限,
同理可求:切點(diǎn)D坐標(biāo)為(2,-
3
),
直線PD的函數(shù)關(guān)系式為y=
3
3
x-
5
3
3
,
因此,直線PD的函數(shù)關(guān)系式為y=-
3
3
x+
5
3
3
y=
3
3
x-
5
3
3
;(8分)

(3)若四邊形EAMD的面積等于△DAN的面積,
又∵S四邊形EAMD=2S△EAM,S△DAN=2S△AMD
∴S△AMD=S△EAM,
∴E、D兩點(diǎn)到x軸的距離相等,
∵PD與⊙M相切,
∴點(diǎn)D與點(diǎn)E在x軸同側(cè),
∴切線PD與x軸平行,
此時(shí)切線PD的函數(shù)關(guān)系式為y=2或y=-2,(9分)
當(dāng)y=2時(shí),由y=x2-2x-3得,x=1±
6
;
當(dāng)y=-2時(shí),由y=x2-2x-3得,x=1±
2
,(11分)
故滿足條件的點(diǎn)P的位置有4個(gè),分別是P1(1+
6
,2)、P2(1-
6
,2)、P3(1+
2
,-2)、P4(1-
2
,-2).(12分)
說明:本參考答案給出了一種解題方法,其它正確方法應(yīng)參考本標(biāo)準(zhǔn)給出相應(yīng)分?jǐn)?shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知點(diǎn)A(8,0),sin∠ABO=
4
5
,拋物線經(jīng)過點(diǎn)O、A,且頂點(diǎn)在△AOB的外接圓上,則此拋物線的解析式為( 。
A.y=-
1
2
x2+4x
B.y=-
1
8
x2+x
C.y=
1
2
x2-4x
或y=-
1
8
x2+x
D.y=-
1
2
x2+4x
或y=
1
8
x2-x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線y=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A.
(1)請(qǐng)求出點(diǎn)A坐標(biāo)和⊙P的半徑;
(2)請(qǐng)確定拋物線的解析式;
(3)M為y軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),直線MB交⊙P于點(diǎn)D.若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.(先畫出符合題意的示意圖再求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一座拋物線型拱橋(如圖),正常水位時(shí)橋下河面寬20m,河面距拱頂4m.
(1)在如圖所示的平面直角坐標(biāo)系中,求出拋物線解析式;
(2)為了保證過往船只順利航行,橋下水面的寬度不得小于18m.求水面在正常水位基礎(chǔ)上漲多少m時(shí),就會(huì)影響過往船只?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),拋物線y=ax2-3ax+b經(jīng)過A(-1,0),C(3,-4)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線L的解析式;
(3)如圖(2),過點(diǎn)E(1,1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNT(點(diǎn)M、N、T分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線上,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一座拋物線型拱橋,以橋基AB為x軸,AB的中垂線為y軸建立直角坐標(biāo)系.已知橋基AB的跨度為60米,如果水位從AB處上升5米,就達(dá)到警戒線CD處,此時(shí)水面CD的寬為30
2
米,求拋物線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=mx2+(m-3)x-3(m>0)的圖象如圖所示.
(1)這條拋物線與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1<x2),與y軸交于點(diǎn)C,且AB=4,⊙M過A、B、C三點(diǎn),求扇形MAC的面積;
(2)在(1)的條件下,拋物線上是否存在點(diǎn)P,使△PBD(PD垂直于x軸,垂足為D)被直線BC分成面積比為1:2的兩部分?若存在,請(qǐng)求出P點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在端午節(jié)前夕,三位同學(xué)到某超市調(diào)研一種進(jìn)價(jià)為2元的粽子的銷售情況.請(qǐng)根據(jù)小麗提供的信息:

(1)請(qǐng)解答小華提出的問題;
(2)能否獲得比800元更多的利潤(rùn)?若能,請(qǐng)舉例說明;若不能,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,用長(zhǎng)20m的籬笆,一面靠墻圍成一個(gè)長(zhǎng)方形的園子,怎么圍才能使園子的面積最大?最大面積是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案