【題目】如圖,在 ABC中, ABC、 ACB的平分線交于點(diǎn)O。

(1)若ABC=40°, ACB=50°,則BOC=_______

(2)若ABC+ ACB=lO0°,則BOC=________

(3)若A=70°,則BOC=_________

(4)若BOC=140°,則A=________

(5)你能發(fā)現(xiàn) BOC與 A之間有什么數(shù)量關(guān)系嗎?寫(xiě)出并說(shuō)明理由。

【答案】(1)、135°;(2)、130°;(3)、125°;(4)、100°;(5)、BOC=90°+0.5A

【解析】

試題分析:根據(jù)角平分線的性質(zhì)以及三角形內(nèi)角和定理得出OBC和OCB與A之間的關(guān)系,然后根據(jù)BOC的內(nèi)角和定理得出BOC與A的關(guān)系.

試題解析:(1)135° (2)130° (3)125° (4)100°

(5)、BO平分ABC, CO平分ABC

OBC=0.5ABC OCB=0.5ACB

OBC+OCB=0.5ABC+0.5ACB=

0.5(180-A)=90-0.5A

O=180-(OBC+OCB)=180-(90-0.5A)=90°+0.5A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)(1)班40名同學(xué)中,14歲的有1人,15歲的有21人,16歲的有16人,17歲的有2人,則這個(gè)班同學(xué)年齡的中位數(shù)是 歲.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(1,2)位于第   象限.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車(chē)間有16名工人,每人每天可加工甲種零件5個(gè)或乙種零件4個(gè).在這16名工人中,一部分人加工甲種零件,其余的加工乙種零件.已知每加工一個(gè)甲種零件可獲利16元,每加工一個(gè)乙種零件可獲利24元.若此車(chē)間一共獲利1 440元,求這一天有幾名工人加工甲種零件.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b),給出如下定義:

,則稱(chēng)點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(2,3)的限變點(diǎn)的坐標(biāo)是(2,3),點(diǎn)(2,5)的限變點(diǎn)的坐標(biāo)是(2,-5)

1點(diǎn)(,1)的限變點(diǎn)的坐標(biāo)是 ;

在點(diǎn)A(2,-1),B(1,2)中有一個(gè)點(diǎn)是函數(shù)y=圖象上某一個(gè)點(diǎn)的限變點(diǎn),這個(gè)點(diǎn)是

2若點(diǎn)P在函數(shù)y=x3(2xk,k>-2)的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b的取值范圍是5b2,求k的取值范圍;

3)若點(diǎn)P在關(guān)于x的二次函數(shù)y= x22txt2t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b的取值范圍是bmbn,其中mn.令s=mn,求s關(guān)于t的函數(shù)解析式并直接寫(xiě)出s的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】方程2xy=9的正整數(shù)解有( )

A. 1組 B. 2組 C. 3組 D. 4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x24=0的根為( 。

A. x = 2 B. x =2 C. x1= 2x2 =2 D. x = 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,點(diǎn)E在邊BC的延長(zhǎng)線上,且OE=OB,聯(lián)結(jié)DE.

(1)求證:DEBE

(2)如果OECD,求證:BD CE=CD DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】到三角形三個(gè)頂點(diǎn)的距離相等的點(diǎn)是三角形( )的交點(diǎn).
A.三個(gè)內(nèi)角平分線
B.三邊垂直平分線
C.三條中線
D.三條高

查看答案和解析>>

同步練習(xí)冊(cè)答案