【題目】如圖,在△ABC中,BC=5cm,BP、CP分別是∠ABC和∠ACB的角平分線,且PD∥AB,PE∥AC,則△PDE的周長(zhǎng)是 cm.
【答案】5
【解析】
試題分析:分別利用角平分線的性質(zhì)和平行線的判定,求得△DBP和△ECP為等腰三角形,由等腰三角形的性質(zhì)得BD=PD,CE=PE,那么△PDE的周長(zhǎng)就轉(zhuǎn)化為BC邊的長(zhǎng),即為5cm.
解:∵BP、CP分別是∠ABC和∠ACB的角平分線,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周長(zhǎng)=PD+DE+PE=BD+DE+EC=BC=5cm.
故答案為:5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,點(diǎn)D、E分別是AB、AC上一點(diǎn),且AD=AE,∠ABE=∠ACD,BE與CD相交于點(diǎn)F.試判斷△BCF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是拋物線y=﹣2x2﹣8x+m上的點(diǎn),則( 。
A. y1<y2<y3 B. y3<y2<y1 C. y3<y1<y2 D. y2<y3<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c是三角形的三邊長(zhǎng),化簡(jiǎn):|a-b+c|-|b-a-c|=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>b,則下列不等式一定成立的是( )
A. a+4<b+4 B. 2a<2b
C. -2a<-2b D. a-b<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如(x+m)與(x+3)的乘積中不含x的一次項(xiàng),則m的值為( ).
A. -3 B. 3 C. 0 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的長(zhǎng)AB為5,寬BC為4,E是BC邊上的一個(gè)動(dòng)點(diǎn),AE⊥EF,EF交CD于點(diǎn)F.設(shè)BE=x,F(xiàn)C=y,則點(diǎn)E從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),能表示y關(guān)于x的函數(shù)關(guān)系的大致圖象是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)A(1,﹣3),AB垂直x軸于點(diǎn)B,則下列說(shuō)法正確的是( )
A.k=3
B.x<0時(shí),y隨x增大而增大
C.S△AOB=3
D.函數(shù)圖象關(guān)于y軸對(duì)稱(chēng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列語(yǔ)句中,不是命題的是( )
A.若兩角之和為90,則這兩個(gè)角互補(bǔ) B.同角的余角相等
C.作線段的垂直平分線 D.相等的角是對(duì)頂角
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com