【題目】把y=x2的圖象向上平移2個(gè)單位.
(1)求新圖象的解析式、頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)畫出平移后的函數(shù)圖象;
(3)求平移后的函數(shù)的最大值或最小值,并求對(duì)應(yīng)的x的值.
【答案】(1)y=x2+2,頂點(diǎn)坐標(biāo)是(0,2),對(duì)稱軸是y軸;(2)畫圖見解析;(3)x=0時(shí),y有最大值,為2.
【解析】試題分析:(1)根據(jù)平移規(guī)律“上加下減”寫出平移后的拋物線的解析式;
(2)根據(jù)拋物線解析式列函數(shù)對(duì)應(yīng)值表,并作函數(shù)圖象;
(3)結(jié)合函數(shù)圖象回答問(wèn)題.
試題解析:(1)把y=-x2的圖象向上平移2個(gè)單位后得到拋物線的解析式為:y=-x2+2,
所以它的頂點(diǎn)坐標(biāo)是(0,2),對(duì)稱軸是x=0,即y軸;
(2)由y=-x2+2,得
其函數(shù)圖象如圖所示:
;
(3)如圖所示:當(dāng)x=0時(shí),y最大=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下表:
x | 0 | 1 | 2 |
ax2 | 1 | ||
ax2+bx+c | 3 | 3 |
(1)求a、b、c的值,并在表內(nèi)空格處填入正確的數(shù);
(2)請(qǐng)你根據(jù)上面的結(jié)果判斷:
①是否存在實(shí)數(shù)x,使二次三項(xiàng)式ax2+bx+c的值為0?若存在,求出這個(gè)實(shí)數(shù)值;若不存在,請(qǐng)說(shuō)明理由.
②畫出函數(shù)y=ax2+bx+c的圖象示意圖,由圖象確定,當(dāng)x取什么實(shí)數(shù)時(shí),ax2+ bx+c>0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一拱形公路橋,圓弧形橋拱的水面跨度AB=80 m,橋拱到水面的最大高度為20 m.(1)求橋拱的半徑.
(2)現(xiàn)有一艘寬60 m,頂部截面為長(zhǎng)方形且高出水面9 m的輪船要經(jīng)過(guò)這座拱橋,這艘輪船能順利通過(guò)嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)大的等腰三角形能被分割為兩個(gè)小等腰三角形,則該大等腰三角形頂角的度數(shù)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地為了鼓勵(lì)居民節(jié)約用水,決定實(shí)行兩級(jí)收費(fèi)制,即每月用水量不超過(guò)15噸(含15噸)時(shí),每噸按政府補(bǔ)貼優(yōu)惠價(jià)收費(fèi);每月超過(guò)15噸時(shí),超過(guò)部分每噸按市場(chǎng)調(diào)節(jié)價(jià)收費(fèi).小明家1月份用水23噸,交水費(fèi)35元,2月份用水19噸,交水費(fèi)25元.
(1)求每噸水的政府補(bǔ)貼優(yōu)惠價(jià)與市場(chǎng)調(diào)節(jié)價(jià)分別是多少;
(2)小明家3月份用水24噸,他家應(yīng)交水費(fèi)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)的圖象交x軸于A(-6,0),交正比例函數(shù)的圖象于點(diǎn)B,且點(diǎn)B在第三象限,它的橫坐標(biāo)為-2,△AOB的面積為6平方單位,求正比例函數(shù)和一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是一個(gè)正方體的表面展開圖,請(qǐng)回答下列問(wèn)題:
(1)與面B,C相對(duì)的面分別是 ;
(2)若A=a3+a2b+3,B=﹣a2b+a3,C=a3﹣1,D=﹣(a2b+15),且相對(duì)兩個(gè)面所表示的代數(shù)式的和都相等,求E,F分別代表的代數(shù)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正五邊形ABCDE的對(duì)角線AC、BE相交于M.
(1)求證:四邊形CDEM是菱形;
(2)設(shè)MF2=BE·BM,若AB=4,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人兩次同時(shí)在同一家糧店購(gòu)買糧食(假設(shè)兩次購(gòu)買糧食的單價(jià)不相同),甲每次購(gòu)買
糧食100千克,乙每次購(gòu)買糧食用去100元.
(1)假設(shè)、分別表示兩次購(gòu)買糧食時(shí)的單價(jià)(單位:元/千克),試用含、的代數(shù)式表示:甲兩次購(gòu)
買糧食共需付款 元,乙兩次共購(gòu)買 千克糧食;若甲兩次購(gòu)買糧食的平均單價(jià)為每千
克元,乙兩次購(gòu)買糧食的平均單價(jià)為每千克元,則= ,= .
(2)若誰(shuí)兩次購(gòu)買糧食的平均單價(jià)低,誰(shuí)購(gòu)買糧食的方式就較合算.請(qǐng)你判斷甲、乙兩人購(gòu)買糧食的方式哪一個(gè)較合算,并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com