【題目】如圖,平行四邊形中,對角線交于點.將直線繞點順時針旋轉(zhuǎn)分別交、于點、

)在旋轉(zhuǎn)過程中,線段的數(shù)量關(guān)系是__________.

)如圖,若,當旋轉(zhuǎn)角至少為__________時,四邊形是平行四邊形,并證明此時的四邊形是是平行四邊形.

【答案】)相等;(

【解析】試題分析:(1)根據(jù)平行四邊形的對邊平行可得ADBC,對角線互相平分可得OA=OC,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠1=2,然后利用角邊角證明AOFCOE全等,根據(jù)全等三角形對應(yīng)邊相等即可得到AF=CE

(2)根據(jù)垂直的定義可得∠BAO=90°,然后求出∠BAO=AOF,再根據(jù)內(nèi)錯角相等,兩直線平行可得ABEF,然后根據(jù)平行四邊形的對邊平行求出AFBE,再根據(jù)兩組對邊分別平行的四邊形是平行四邊形證明;

試題解析:

)相等,理由如下:

如圖所示:

ABCD中,ADBC,OA=OC,
∴∠1=2,
AOFCOE中,

∴△AOF≌△COE(ASA),
AF=CE;

)證明:當旋轉(zhuǎn)角為時,

,

又∵ABAC,
∴∠BAO=90°,
AOF=90°,
∴∠BAO=AOF,
ABEF,
∵四邊形ABCD是平行四邊形,
ADBC,
即:AFBE,
ABEF,AFBE,
∴四邊形ABEF是平行四邊形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD的對角線ACBD交于O點,分別過頂點B,C作兩對角線的平行線交于點E,得平行四邊形OBEC.

(1)如果四邊形ABCD為矩形(如圖),四邊形OBEC為何種四邊形?請證明你的結(jié)論;

(2)當四邊形ABCD    形時,四邊形OBEC是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點A,點A在第四象限,過點AAH⊥x軸,垂足為點H,點A的橫坐標為3,且△AOH的面積為3.

(1)求正比例函數(shù)的解析式;

(2)在x軸上能否找到一點P,使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點P∠AOB的角平分線上的一點,點D在邊OA上.愛動腦筋的小剛經(jīng)過仔細觀察后,進行如下操作:在邊OB上取一點E,使得PE=PD,這時他發(fā)現(xiàn)∠OEP∠ODP之間有一定的數(shù)量關(guān)系,請你寫出∠OEP∠ODP所有可能的數(shù)量關(guān)系是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象交x軸于A(﹣1,0)、B(2,0)兩點,交y軸于點C(0,﹣2),過點A、C畫直線.

(1)求二次函數(shù)的解析式;

(2)若點Px軸正半軸上,且PA=PC,求OP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由7個形狀、大小完全相同的正六邊形組成的網(wǎng)格,正六邊形的頂點稱為格點.已知每個正六邊形的邊長為1,△ABC的頂點都在格點上,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點DAC上,點EBC的延長線上,且BDDE.

1)若點DAC的中點,如圖1,求證:ADCE

2)若點D不是AC的中點,如圖2,試判斷ADCE的數(shù)量關(guān)系,并證明你的結(jié)論:(提示:過點DDFBC,交AB于點F

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰和等腰中,斜邊中點也是的中點,

)如圖,則的關(guān)系是__________.

)將繞點順時針旋轉(zhuǎn),請畫出圖形井求的值.

)將繞點逆時針旋轉(zhuǎn),角度為,請判斷()的結(jié)論是否仍然成立,若成立請證明,若不成立請畫圖說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有A、BC三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應(yīng)建在( )

A. AC、BC兩邊高線的交點處

B. AC、BC兩邊中線的交點處

C. AC、BC兩邊垂直平分線的交點處

D. ∠A∠B兩內(nèi)角平分線的交點處

查看答案和解析>>

同步練習(xí)冊答案