【題目】如圖,拋物線x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知,

求拋物線的表達式;

在拋物線的對稱軸上是否存在點P,使是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

【答案】(1);(2)存在,滿足條件的P點坐標為;(3)當時,有最大值,最大值為,此時E點坐標為

【解析】

1)利用待定系數(shù)法求出二次函數(shù)解析式即可;

2)可設出P點坐標,從而可表示出PC、PD的長,由條件可得PC=CDPD=CD,可得到關于P點坐標的方程,可求得點P的坐標;

3)根據拋物線的解析式求得B點的坐標,然后根據待定系數(shù)法求得直線BC的解析式,可設出點E的坐標,則可表示出點F的坐標,進而表示出EF的長度,則可表示出△CBF的面積,從而可表示出四邊形CDBF的面積,利用二次函數(shù)的性質,可求得其最大值及此時E點的坐標.

,代入,解得,

拋物線解析式為

存在.

拋物線的對稱軸為直線,

,

,

如圖1,當時,則;

時,則,,

綜上所述,滿足條件的P點坐標為;

時,,解得,則,

設直線BC的解析式為

,代入得,解得,

直線BC的解析式為,

,則,

,

,

,

時,有最大值,最大值為,此時E點坐標為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是⊙的直徑,是⊙上一點,,垂足為、分別是、上一點(不與端點重合),如果,下面結論:①;②;③;④;⑤.其中正確的是(

A. ①②③B. ①③⑤C. ④⑤D. ①②⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】從﹣2,﹣1,3這三個數(shù)中隨機抽取兩個數(shù)分別記為x,y,把點M的坐標記為(x,y),若點N為(0,3),則在平面直角坐標系內直線MN經過過四象限的概率為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點的坐標是,點的坐標是,以線段為直徑作,交軸的正半軸于點,過、三點作拋物線.

1)求拋物線的解析式;

2)連結,,點延長線上一點,的角平分線于點,連結,在直線上找一點,使得的周長最小,并求出此時點的坐標;

3)在(2)的條件下,拋物線上是否存在點,使得,若存在,請直接寫出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)(x>0,k>0)的圖象經過點A1,2),Bm,n)(m1),過點By軸的垂線,垂足為C

1)求該反比例函數(shù)解析式;

2)當ABC面積為2時,求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,對角線ACBD相交于點O,且OA=OB

1)求證:四邊形ABCD是矩形;

2)若AB=2,∠AOB=60°,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象過點A(0,3),且與反比例函數(shù)y=的圖象相交于B、C兩點.若AB=BC,則k1k2的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圓中,、是圓的半徑,點在劣弧上,,,,連接.

1)如圖1,試說明:平分

2)如圖2,點在弦的延長線上,連接,如果是直角三角形,求的長;

3)如圖3,點在弦上,與點不重合,連接與弦交于點,設點與點的距離為,的面積為,求的函數(shù)關系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,矩形OABC的頂點A(﹣6,0),C(0,2).將矩形OABC繞點O順時針方向旋轉,使點A恰好落在OB上的點A1處,則點B的對應點B1的坐標為_____

查看答案和解析>>

同步練習冊答案