【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點D,AE∥BD交CB的延長線于點E.若∠E=35°,則∠BAC的度數(shù)為( 。
A. 40° B. 45° C. 60° D. 70°
【答案】A
【解析】根據(jù)平行線的性質(zhì)可得∠CBD的度數(shù),根據(jù)角平分線的性質(zhì)可得∠CBA的度數(shù),根據(jù)等腰三角形的性質(zhì)可得∠C的度數(shù),根據(jù)三角形內(nèi)角和定理可得∠BAC的度數(shù).
解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,
∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.
故選A.
“點睛”考查了平行線的性質(zhì),角平分線的性質(zhì),等腰三角形的性質(zhì)和三角形內(nèi)角和定理.關(guān)鍵是得到∠C=∠CBA=70°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個長方形運動場被分隔成A,B,A,B,C共5個區(qū),A區(qū)是邊長為a m的正方形,C區(qū)是邊長為c m的正方形.
(1)列式表示每個B區(qū)長方形場地的周長,并將式子化簡;
(2)列式表示整個長方形運動場的周長,并將式子化簡;
(3)如果a=40,c=10,求整個長方形運動場的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國古代對勾股定理有深刻的認(rèn)識.
(1)三國時代吳國數(shù)學(xué)家趙爽第一次對勾股定理加以證明:用四個全等的圖1所示的直角三角形拼成一個圖2所示的大正方形,中間空白部分是一個小正方形.如果大正方形的面積是13,小正方形的面積是1,直角三角形的兩直角邊分別為a,b,求(a+b)2的值;
(2)清朝的康熙皇帝對勾股定理也很有研究,他著有《積求勾股法》:用現(xiàn)代的數(shù)學(xué)語言描述就是:若直角三角形的三邊長分別為3,4,5的整數(shù)倍,設(shè)其面積為S,則求其邊長的方法為:第一步=m;第二步: =k;第三步:分別用3,4,5乘k,得三邊長.當(dāng)面積S等于150時,請用“積求勾股法”求出這個直角三角形的三邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直線上順次取 A,B,C 三點,分別以 AB,BC 為邊長在直線的同側(cè)作正三角形, 作得兩個正三角形的另一頂點分別為 D,E.
(1)如圖①,連結(jié) CD,AE,求證:CD=AE;
(2)如圖②,若 AB=1,BC=2,求 DE 的長;
(3)如圖③,將圖②中的正三角形 BCE 繞 B 點作適當(dāng)?shù)男D(zhuǎn),連結(jié) AE,若有 DE2+BE2= AE2,試求∠DEB 的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com