【題目】已知:AB⊙O的直徑,C、D為心⊙O上的點,C是優(yōu)弧AD的中點,CE⊥DBDB的延長線于點E

1)如圖1,判斷直線CE⊙O的位置關系,并說明理由.

2)如圖2,若tan∠BCE,連BC、CD,求cos∠BCD的值.

【答案】1)直線CE⊙O相切,理由詳見解析;(2cos∠BCD

【解析】

1)如圖,作輔助線;運用圓周角定理及其推論證明∠OCE90°,即可解決問題.

2)首先運用切割線定理求出ED的長度;證明四邊形CEDF為矩形,得到CFDE;證明OF△ABD的中位線;求出AFOF的長度;進而求出OA的長度,即可解決問題.

解:(1)直線CE⊙O相切,理由如下:

如圖,連接ACCD,BC、ADCO,延長COAD于點F

∠CBE∠CAD;而C是優(yōu)弧ACD的中點,

,

∴∠CBA∠CDA∠CAD,

∠CBE∠CAD,∠CBA∠OCB,

∴∠CBE∠OCB;而CE⊥BE,

∴∠ECB+∠CBE∠ECB+∠OCB90°,即

∴OC⊥CE,

CE⊙O的切線;

2∵tan∠BCE,

BE4k,CE5k

∵CE⊙O的切線,

∴CE2EBED,

∴EDk,BDk;

∵AB⊙O的直徑,

∴∠ADB90°,而∠E∠OCE90°

四邊形CEDF為矩形,

∴OF⊥AD,AFDFCE5k,

∴OF△ABD的中位線,

∴OFBDk;由勾股定理得:OAk

∴cos∠BAD,

∠BCD∠BAD,

∴cos∠BCD

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i10.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點EAB,CD,E均在同一平面內),在E處處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為__米.(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°≈0.45

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小吳家準備購買一臺電視機,小吳將收集到的某地區(qū)A、B、C三種品牌電視機銷售情況的有關數(shù)據(jù)統(tǒng)計如下:

根據(jù)上述三個統(tǒng)計圖,請解答:

120142019年三種品牌電視機銷售總量最多的是   品牌,月平均銷售量最穩(wěn)定的是   品牌.

22019年其他品牌的電視機年銷售總量是多少萬臺?

3)貨比三家后,你建議小吳家購買哪種品牌的電視機?說說你的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某小區(qū)A棟樓在B棟樓的南側,兩樓高度均為90m,樓間距為MN.春分日正午,太陽光線與水平面所成的角為55.7°,A棟樓在B棟樓墻面上的影高為DM;冬至日正午,太陽光線與水平面所成的角為30°,A棟樓在B棟樓墻面上的影高為CM.已知CD44.5m

(1)求樓間距MN;

(2)B號樓共30層,每層高均為3m,則點C位于第幾層?(參考數(shù)據(jù):tan30°≈0.58,sin55.7°≈0.83,cos55.7°≈0.56tan55.7°≈1.47)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠MON =ACB = 90°AC = BC,AB =5,ABC頂點A、C分別在ON、OM上,點DAB邊上的中點,當點A在邊ON上運動時,點C隨之在邊OM上運動,則OD的最大值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若二次函數(shù)的圖象與軸分別交于點、,且過點.

1)求二次函數(shù)表達式;

2)若點為拋物線上第一象限內的點,且,求點的坐標;

3)在拋物線上(下方)是否存在點,使?若存在,求出點軸的距離;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,以點為圓心、為半徑畫弧交于點.若恰好為的中點.

1_______

2平分嗎?證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著技術的發(fā)展,人們對各類產品的使用充滿期待.某公司計劃在某地區(qū)銷售第一款產品,根據(jù)市場分析,該產品的銷售價格將隨銷售周期的變化而變化.設該產品在第為正整數(shù))個銷售周期每臺的銷售價格為元,之間滿足如圖所示的一次函數(shù)關系.

1)求之間的關系式;

2)設該產品在第個銷售周期的銷售數(shù)量為(萬臺),的關系可用來描述.根據(jù)以上信息,試問:哪個銷售周期的銷售收入最大?此時該產品每臺的銷售價格是多少元?

查看答案和解析>>

同步練習冊答案