【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對稱軸x=1.如圖所示,有下列5個結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;a+b>m(am+b)(m≠1的實數(shù)).其中所有結(jié)論正確的是______(填寫番號).

【答案】③④⑤

【解析】

根據(jù)函數(shù)圖象和二次函數(shù)的性質(zhì)可以判斷題目中各個小題的結(jié)論是否成立,從而可以解答本題.

解:由圖象可得,拋物線開口向下,則a<0,拋物線與y軸交于正半軸,則c>0,對稱軸在y軸右側(cè),則與a的符號相反,故b>0.
∴a<0,b>0,c>0,
∴abc<0,故①錯誤,
當(dāng)x=-1時,y=a-b+c<0,得b>a+c,故②錯誤,
∵二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且-1<x1<0,對稱軸x=1,
∴x=2時的函數(shù)值與x=0的函數(shù)值相等,
∴x=2時,y=4a+2b+c>0,故③正確,
∵x=-1時,y=a-b+c<0,-=1,
∴2a-2b+2c<0,b=-2a,
∴-b-2b+2c<0,
∴2c<3b,故④正確,
由圖象可知,x=1時,y取得最大值,此時y=a+b+c,
∴a+b+c>am2+bm+c(m≠1),
∴a+b>am2+bm
∴a+b>m(am+b),故⑤正確,
故答案為:③④⑤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組開展課外活動如圖,小明從點M出發(fā)以15米/秒的速度,沿射線MN方向勻速前進,2秒后到達點B,此時他AB在某一燈光下的影長為MB繼續(xù)按原速行走2秒到達點D,此時他CD在同一燈光下的影子GD仍落在其身后,并測得這個影長GD為12米,然后他將速度提高到原來的15倍再行走2秒到達點F,此時點AC,E三點共線

1請在圖中畫出光源O點的位置,并畫出小明位于點F時在這個燈光下的影長FH不寫畫法;

2求小明到達點F時的影長FH的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在做“拋擲一枚質(zhì)地均勻的硬幣”試驗時,下列說法正確的是( )

A. 隨著拋擲次數(shù)的增加,正面朝上的頻率越來越小

B. 當(dāng)拋擲的次數(shù)很大時,正面朝上的次數(shù)一定占總拋擲次數(shù)的

C. 不同次數(shù)的試驗,正面朝上的頻率可能會不相同

D. 連續(xù)拋擲11次硬幣都是正面朝上,第12次拋擲出現(xiàn)正面朝上的概率小于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=12,BC=24,動點P從點A開始沿邊AB向終點B以每秒2個單位長度的速度移動,動點Q從點B開始沿邊BC以每秒4個單位長度的速度向終點C移動,如果點P、Q分別從點A、B同時出發(fā),那么△PBQ的面積S隨出發(fā)時間t(s)如何變化?寫出函數(shù)關(guān)系式及t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲口袋里裝有2個相同的小球,它們分別寫有數(shù)字12;乙口袋里裝有3個相同的小球,它們分別寫有數(shù)字3,4,5;丙口袋里有2個相同的小球,它們分別寫有數(shù)字6,7,從三個口袋中各隨機地取出1個小球,按要求解答下列問題:

(1)畫出樹形圖”;

(2)取出的3個小球上只有1個偶數(shù)數(shù)字的概率是多少?

(3)取出的3個小球上全是奇數(shù)數(shù)字的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點C,與AB的延長線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,ADE經(jīng)順時針旋轉(zhuǎn)后與ABF重合.

(1)旋轉(zhuǎn)中心是點________,旋轉(zhuǎn)了________度.

(2)如果連接EF,那么AEF是怎樣的三角形?為什么?

(3)請用尺規(guī)作圖畫出AEF的外接圓,標(biāo)明圓心M的位置,量出半徑的長度為________,并判斷點C與⊙M的位置關(guān)系為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2+c與直線y=3相交于點AB,與y軸相交于點C(0,﹣1),其中點A的橫坐標(biāo)為﹣4.

(1)計算a,c的值;

(2)求出拋物線yax2+cx軸的交點坐標(biāo);

(3)利用圖象,當(dāng)0≤ax2+c≤3時,直接寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一張矩形紙片,長10cm,寬6cm,在它的四角各減去一個同樣的小正方形,然后折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是32cm2,求剪去的小正方形的邊長.設(shè)剪去的小正方形邊長是xcm,根據(jù)題意可列方程為(  )

A. 10×6﹣4×6x=32 B. (10﹣2x)(6﹣2x)=32

C. (10﹣x)(6﹣x)=32 D. 10×6﹣4x2=32

查看答案和解析>>

同步練習(xí)冊答案