【題目】如圖,AB是⊙O的直徑,CD與⊙O相切于點(diǎn)C,與AB的延長(zhǎng)線交于D.

(1)求證:ADC∽△CDB;

(2)若AC=2,AB=CD,求⊙O半徑.

【答案】(1)見解析;(2)

【解析】分析: (1)首先連接CO,根據(jù)CD與⊙O相切于點(diǎn)C,可得:∠OCD=90°;然后根據(jù)AB是圓O的直徑,可得:∠ACB=90°,據(jù)此判斷出∠CAD=∠BCD,即可推得△ADC∽△CDB.

(2)首先設(shè)CDx,則AB=32x,OC=OB=34x,用x表示出OD、BD;然后根據(jù)△ADC∽△CDB,可得:ACCB=CDBD,據(jù)此求出CB的值是多少,即可求出⊙O半徑是多少.

詳解:

(1)證明:如圖,連接CO,

,

CD與⊙O相切于點(diǎn)C,

∴∠OCD=90°,

AB是圓O的直徑,

∴∠ACB=90°,

∴∠ACO=BCD,

∵∠ACO=CAD,

∴∠CAD=BCD,

ADCCDB中,

∴△ADC∽△CDB.

(2)解:設(shè)CDx,

AB=x,OC=OB=x,

∵∠OCD=90°,

OD===x,

BD=OD﹣OB=x﹣x=x,

由(1)知,ADC∽△CDB,

=,

,

解得CB=1,

AB==,

∴⊙O半徑是

點(diǎn)睛: 此題主要考查了切線的性質(zhì)和應(yīng)用,以及勾股定理的應(yīng)用,要熟練掌握.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點(diǎn)P(﹣2a),點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)P′在反比例函數(shù)yk≠0)的圖象上.

1)求反比例函數(shù)的解析式;

2)直接寫出當(dāng)y4時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了正方形之后,給同桌小文出了道題,從下列四個(gè)條件:①AB=BC,②∠ABC=90°,③AC=BD④AC⊥BD中選兩個(gè)作為補(bǔ)充條件,使ABCD為正方形(如圖),現(xiàn)有下列四種選法,你認(rèn)為其中錯(cuò)誤的是( )

A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】任意拋擲一枚骰子兩次,骰子停止轉(zhuǎn)動(dòng)后,計(jì)算朝上的點(diǎn)數(shù)的和.

(1)和最小的是多少,和最大的是多少?

(2)下列事件:①點(diǎn)數(shù)的和為7;②點(diǎn)數(shù)的和為1;③點(diǎn)數(shù)的和為15.哪些是不可能性事件?哪些是不確定事件?

(3)點(diǎn)數(shù)的和為7與點(diǎn)數(shù)的和為2的可能性誰大?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于(x1,0),且﹣1<x1<0,對(duì)稱軸x=1.如圖所示,有下列5個(gè)結(jié)論:①abc>0;b<a+c;4a+2b+c>0;2c<3b;a+b>m(am+b)(m≠1的實(shí)數(shù)).其中所有結(jié)論正確的是______(填寫番號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里裝有顏色不同的黑、白兩種球共60個(gè),它們除顏色不同外,其余都相同,王穎做摸球?qū)嶒?yàn),她將盒子里面的球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回盒子中攪勻,經(jīng)過大量重復(fù)上述摸球的過程,發(fā)現(xiàn)摸到白球的頻率定于0.25.

(1)請(qǐng)估計(jì)摸到白球的概率將會(huì)接近________;

(2)計(jì)算盒子里白、黑兩種顏色的球各有多少個(gè)?

(3)如果要使摸到白球的概率為,需要往盒子里再放入多少個(gè)白球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿BC的方向運(yùn)動(dòng),且DE始終經(jīng)過點(diǎn)A,EFAC交于M點(diǎn).

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運(yùn)動(dòng)過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說明理由;

(3)當(dāng)線段BE為何值時(shí),線段AM最短,最短是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C⊙O優(yōu)弧ACB上的中點(diǎn),弦AB=6cmEOC上任意一點(diǎn),動(dòng)點(diǎn)F從點(diǎn)A出發(fā),以每秒1cm的速度沿AB方向響點(diǎn)B勻速運(yùn)動(dòng),若y=AEEF,y與動(dòng)點(diǎn)F的運(yùn)動(dòng)時(shí)間x0≤x≤6 )秒的函數(shù)關(guān)系式為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知線段a=0.3m,b=60cm,c=12dm.

(1)求線段a與線段b的比.

(2)如果線段a、b、c、d成比例,求線段d的長(zhǎng).

(3)b是a和c的比例中項(xiàng)嗎?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案