【題目】如圖,在四邊形ABCD中,ADBC,ABC=90°,AB=8,AD=3,BC=4,PAB邊上一動點.若PADPBC是相似三角形,則滿足條件的點P(  )

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】由于∠PAD=PBC=90°,故要使△PAD與△PBC相似,分兩種情況討論①△APD∽△BPC②△APD∽△BCP,這兩種情況都可以根據(jù)相似三角形對應(yīng)邊的比相等求出AP的長即可得到P點的個數(shù).

ABBC,∴∠B=90°.

ADBC∴∠A=180°﹣B=90°,∴∠PAD=PBC=90°.AB=8AD=3,BC=4,

設(shè)AP的長為xBP長為8x

AB邊上存在P,使△PAD與△PBC相似,那么分兩種情況

①若△APD∽△BPCAPBP=ADBC,x:(8x)=34解得x=;

②若△APD∽△BCPAPBC=ADBP,x4=3:(8x),解得x=2x=6∴滿足條件的點P的個數(shù)是3

故選C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線a,b,c表示交叉的三條公路,現(xiàn)要建一貨物中轉(zhuǎn)站,要求它到這三條公路的距離相等,則可供選擇的站址最多有  

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:

如圖1,ABC中,∠ACB=90°,點DAB上,且∠BAC=2DCB,求證:AC=AD.

小明發(fā)現(xiàn),除了直接用角度計算的方法外,還可以用下面兩種方法:

方法1:如圖2,作AE平分∠CAB,與CD相交于點E.

方法2:如圖3,作∠DCF=DCB,與AB相交于點F.

(1)根據(jù)閱讀材料,任選一種方法,證明AC=AD.

用學(xué)過的知識或參考小明的方法,解決下面的問題:

(2)如圖4,ABC中,點DAB上,點EBC上,且∠BDE=2ABC,點FBD上,且∠AFE=BAC,延長DC、FE,相交于點G,且∠DGF=BDE.

①在圖中找出與∠DEF相等的角,并加以證明;

②若AB=kDF,猜想線段DEDB的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了預(yù)測本校九年級男生畢業(yè)體育測試達標(biāo)情況,隨機抽取該年級部分男生進行了一次測試(滿分50分,成績均記為整數(shù)分),并按測試成績m(單位:分)分成四類:A類(45<m≤50),B類(40<m≤45),C類(35<m≤40),D類(m≤35)繪制出如圖所示的兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:

(1)求本次抽取的樣本容量和扇形統(tǒng)計圖中A類所對的圓心角的度數(shù);

(2)若該校九年級男生有500名,D類為測試成績不達標(biāo),請估計該校九年級男生畢業(yè)體育測試成績能達標(biāo)的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=7.5,AC=9,SABC=.動點PA點出發(fā),沿AB方向以每秒5個單位長度的速度向B點勻速運動,動點QC點同時出發(fā),以相同的速度沿CA方向向A點勻速運動,當(dāng)點P運動到B點時,P、Q兩點同時停止運動,以PQ為邊作正PQM(P、Q、M按逆時針排序),以QC為邊在AC上方作正QCN,設(shè)點P運動時間為t秒.

(1)求cosA的值;

(2)當(dāng)PQMQCN的面積滿足SPQM=SQCN時,求t的值;

(3)當(dāng)t為何值時,PQM的某個頂點(Q點除外)落在QCN的邊上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上,兩點對應(yīng)的有理數(shù)分別為12,點從點出發(fā),以每秒1個單位長度的速度沿數(shù)軸負方向運動,點同時從點出發(fā),以每秒2個單位長度的速度沿數(shù)軸正方向運動,設(shè)運動時間為秒.

1)求經(jīng)過2秒后,數(shù)軸點分別表示的數(shù);

2)當(dāng)時,求的值;

3)在運動過程中是否存在時間使,若存在,請求出此時的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=15,AC=13,BC邊上高AD=12,試求△ABC周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BDABC的角平分線,CDABC的外角∠ACE的外角平分線,CDBD交于點D.

(1)若∠A=50°,則∠D=   

(2)若∠A=80°,則∠D=   

(3)若∠A=130°,則∠D=   ;

(4)若∠D=36°,則∠A=   ;

(5)綜上所述,你會得到什么結(jié)論?證明你的結(jié)論的準(zhǔn)確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月份,我市某中學(xué)開展?fàn)幾觥拔搴眯」瘛闭魑谋荣惢顒,賽后隨機抽取了部分參賽學(xué)生的成績,按得分劃分為A,B,C,D四個等級,并繪制了如下不完整的頻數(shù)分布表和扇形統(tǒng)計圖:

 等級

 成績(s)

 頻數(shù)(人數(shù))

 A

 90<s≤100

4

 B

 80<s≤90

x

 C

 70<s≤80

16

 D

 s≤70

6

根據(jù)以上信息,解答以下問題:

(1)表中的x=   ;

(2)扇形統(tǒng)計圖中m=   ,n=   ,C等級對應(yīng)的扇形的圓心角為   度;

(3)該校準(zhǔn)備從上述獲得A等級的四名學(xué)生中選取兩人做為學(xué)!拔搴眯」瘛敝驹刚,已知這四人中有兩名男生(用a1,a2表示)和兩名女生(用b1,b2表示),請用列表或畫樹狀圖的方法求恰好選取的是a1和b1的概率.

查看答案和解析>>

同步練習(xí)冊答案