【題目】如圖,直線l:y=x﹣ 與x軸正半軸、y軸負(fù)半軸分別相交于A、C兩點(diǎn),拋物線y= x2+bx+c經(jīng)過點(diǎn)B(﹣1,0)和點(diǎn)C.
(1)填空:直接寫出拋物線的解析式:;
(2)已知點(diǎn)Q是拋物線y= x2+bx+c在第四象限內(nèi)的一個(gè)動(dòng)點(diǎn).
①如圖,連接AQ、CQ,設(shè)點(diǎn)Q的橫坐標(biāo)為t,△AQC的面積為S,求S與t的函數(shù)關(guān)系式,并求出S的最大值;

②連接BQ交AC于點(diǎn)D,連接BC,以BD為直徑作⊙I,分別交BC、AB于點(diǎn)E、F,連接EF,求線段EF的最小值,并直接寫出此時(shí)Q點(diǎn)的坐標(biāo).

【答案】
(1)y= x2 x﹣
(2)

解:①作QM∥y軸交直線AC于M,如圖①,

設(shè)Q(t, t2 t﹣ ),則M(t,t﹣ ),

∴MQ=t﹣ ﹣( t2 t﹣ )=﹣ t2+ t,

∴S=SCMQ﹣SAMQ= MQ1=﹣ t2+ t=﹣ (t﹣1)2+ ,

當(dāng)t=1時(shí),S有最大值

②連接OE、OF,作OH⊥EF于H,如圖②,則EH=FH,

在Rt△OBC中,∵tan∠OBC= = ,

∴∠OBC=60°,

同理可得∠OAC=60°,AC=2OA=2,

∴△ABC為等邊三角形,

∵∠EIF=2∠EBF,

∴∠EIF=120°,

∴∠IEH=30°,

在Rt△IEH中,∵cos∠IEH= ,

∴EH= IE,

∴EF=2EH= IE,

而IE= BD

∴EF= BD,

當(dāng)BD的值最小時(shí),EF的值最小,

而當(dāng)BD⊥AC時(shí),即BD為等邊△ABC的高時(shí),BD的值最小,

此時(shí)BD= AC= ,

∴線段EF的最小值為

∵∠QBA=30°,

∴直線BQ與y軸的交點(diǎn)為(0,﹣ ),

易得直線BQ的解析式為y=﹣ x﹣

解方程組 ,

∴此時(shí)Q點(diǎn)的坐標(biāo)為(2,﹣


【解析】解:(1)當(dāng)y=0時(shí),x﹣ =0,解得x= ,則A( ,0),
當(dāng)x=0時(shí),y=x﹣ =﹣ ,則C(0,﹣ ),把B(﹣1,0),C(0,﹣ )代入y= x2+bx+c得 ,解得 ,
所以拋物線解析式為y= x2 x﹣ ;
所以答案是y= x2 x﹣
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)),還要掌握二次函數(shù)的圖象(二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC和△DCE均是等腰三角形,CACB,CDCE,∠BCADCE.

1)求證:BDAE;

2)若∠BAC70°,求∠BPE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國(guó)慶期間,為了滿足百姓的消費(fèi)需求,某商店計(jì)劃用170000元購(gòu)進(jìn)一批家電,這批家電的進(jìn)價(jià)和售價(jià)如表:

類別 彩電 冰箱 洗衣機(jī)

進(jìn)價(jià)(元/臺(tái)) 2000 1600 1000

售價(jià)(元/臺(tái)) 2300 1800 1100

若在現(xiàn)有資金允許的范圍內(nèi),購(gòu)買表中三類家電共100臺(tái),其中彩電臺(tái)數(shù)是冰箱臺(tái)數(shù)的2倍,設(shè)該商店購(gòu)買冰箱x臺(tái).

(1)商店至多可以購(gòu)買冰箱多少臺(tái)?

(2)購(gòu)買冰箱多少臺(tái)時(shí),能使商店銷售完這批家電后獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為更好地培養(yǎng)學(xué)生興趣,開展“拓展課程走班選課”活動(dòng),隨機(jī)抽查了部分學(xué)生,了解他們最喜愛的項(xiàng)目類型(分為書法、圍棋、戲劇、國(guó)畫共4類),并將統(tǒng)計(jì)結(jié)果繪制成如圖不完整的頻數(shù)分布表及頻數(shù)分布直方圖. 最喜愛的傳統(tǒng)文化項(xiàng)目類型頻數(shù)分布表

項(xiàng)目類型

頻數(shù)

頻率

書法類

18

a

圍棋類

14

0.28

喜劇類

8

0.16

國(guó)畫類

b

0.20


根據(jù)以上信息完成下列問題:
(1)頻數(shù)分布表中a= , b=;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若全校共有學(xué)生1500名,估計(jì)該校最喜愛圍棋的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2﹣(m+2)x+2m﹣1=0.
(1)求證:此方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若拋物線y=x2﹣(m+2)x+2m﹣1=0與x軸有兩個(gè)交點(diǎn)都在x軸正半軸上,求m的取值范圍;
(3)填空:若x2﹣(m+2)x+2m﹣1=0的兩根都大于1,則m的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)EAD上.

(1)求證:BE=CE;

(2)如圖2,若BE的延長(zhǎng)線交AC于點(diǎn)F,且BFAC,垂足為F,BAC=45°,原題設(shè)其它條件不變.求證:AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD及等邊△ABE.已知∠BAC=30°,EF⊥AB,垂足為F,連接DF

1)試說明AC=EF

2)求證:四邊形ADFE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點(diǎn)D在邊AC上(點(diǎn)D不與點(diǎn)A,C重合),點(diǎn)E是射線BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B,C重合),連接DE,以DE為邊作等邊△DEF,連接CF.

(1)如圖1,當(dāng)DE的延長(zhǎng)線與AB的延長(zhǎng)線相交,且點(diǎn)C,F(xiàn)在直線DE的同側(cè)時(shí),過點(diǎn)D作DG∥AB,DG交BC于點(diǎn)G,求證:CF=EG;

(2)如圖2,當(dāng)DE的反向延長(zhǎng)線與AB的反向延長(zhǎng)線相交,且點(diǎn)C,F(xiàn)在直線DE的同側(cè)時(shí),求證:CD=CE+CF;

(3)如圖3,當(dāng)DE的反向延長(zhǎng)線與線段AB相交,且點(diǎn)C,F(xiàn)在直線DE的異側(cè)時(shí),猜想CD、CE、CF之間的等量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A,B,C三點(diǎn)的坐標(biāo)分別為(0,a)(b,0)、(b,c),其中a,b,c滿足關(guān)系式(3a2b)20,|c4|0

⑴求ab,c的值;

⑵如果在第二象限內(nèi)有一點(diǎn)P(m1,1),請(qǐng)用含m的代數(shù)式表示△AOP的面積;

⑶在⑵的條件下,m在什么范圍取值時(shí),△AOP的面積不大于△ABC的面積?請(qǐng)求出在符合條件的前提下、△AOP的面積最大時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案