4.如表是某社區(qū)10戶居民在今年3月份的用電情況:
居民(戶數(shù))1234
月用電量(度/戶)30425052
則關(guān)于這10戶居民月用電量的中位數(shù)是( 。
A.42B.46C.50D.52

分析 根據(jù)中位數(shù)的定義解答即可.

解答 解:把10戶居民月用電量從小到大排列為:30,42.42,50,50,50,52,52,52,52,
所以這10戶居民月用電量的中位數(shù)是=$\frac{50+50}{2}$=50,
故選C.

點評 本題考查了確定一組數(shù)據(jù)的中位數(shù)的能力.要明確中位數(shù)的值與大小排列順序有關(guān),一些學生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

14.化簡后求值:(2y-x)(-2y-x)+(x-2y)2,其中x=-1,y=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.如圖,在?ABCD中,對角線BD=8cm,AE⊥BD,垂足為E,且AE=3cm,BC=4cm,則AD與BC之間的距離為6cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.“位似變化”是一種重要的幾何變化,可以將圖形放大或縮小,且與原圖形相似.你能用位似變化解決下列問題嗎?
如圖Rt△ABC中,∠C=90°,AC=12,BC=6,有矩形EFGH的一邊EF在邊AC上,點H在斜邊AC上,EF=2,HE=1.
(1)請你用圓規(guī)和無刻度直尺在Rt△ABC內(nèi)作一個最大的矩形且與矩形EFGH位似.(不要求寫作法,但必須保留作圖痕跡)
(2)請證明你作圖方法的正確性.
(3)求最大矩形與矩形EFGH的面積之比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

19.如圖,直線l與⊙O交于C,D兩點,且與半徑OA垂直,垂足為H,∠ODC=30°,在OD的延長線上取一點B,使得AD=BD,若⊙O的半徑為2,則圖中陰影部分的面積為2$\sqrt{3}$-$\frac{2}{3}$π(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.在直角坐標系中,點A(5,0),點B(4,3),點C(0,3),動點M從點O出發(fā),以每秒1個單位長度向C點運動,動點N同時從點C出發(fā),以每秒2個單位長度向B點運動,當點N運動到B點時,點M也隨之停止運動,設(shè)運動時間為t(秒)
(1)求經(jīng)過A、B、C三點的拋物線解析式.
(2)t為何值時,以A、M、N為頂點的三角形是直角三角形?
(3)當N經(jīng)過拋物線的對稱軸與BC交點時,此時拋物線的對稱軸能將三角形AMN的面積分為1:2嗎?請說明理由.
(4)按此速度運動下去,以A、M、N為頂點的三角形可以構(gòu)成等腰直角三角形嗎?若能,請說明理由,若不能,能否通過改變M點的速度使以A、M、N為頂點的三角形為等腰直角三角形,并求出改變后的速度和此時t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.如圖,?ABCD中,E是AD的中點,連接BE并延長,交CD的延長線于點F.連接CE.
(1)求證:△ABE≌△DFE;
(2)小麗在完成(1)的證明后繼續(xù)進行了探索:當CE平分∠BCD時,她猜想△BCF是等腰三角形,請在下列框圖中補全她的證明思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

13.如圖.在平行四邊形ABCD中,CE是∠OCB的角平分線,且交AB于點E,DB與CE相交于點O,
(1)找出圖中的相似三角形,并給出證明;
(2)若AB=7,BC=5,則求$\frac{OB}{OD}$的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.在數(shù)軸上表示不等式2x-4>0的解集,正確的是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案