【題目】已知等邊和等腰,,.
(1)如圖1,點在上,點在上,是的中點,連接,,則線段與之間的數(shù)量關(guān)系為 ;
(2)如圖2,點在內(nèi)部,點在外部,是的中點,連接,,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明,若不成立,請說明理由.
(3)如圖3,若點在內(nèi)部,點和點重合,點在下方,且為定值,當(dāng)最大時,的度數(shù)為 .
【答案】(1);
(2)成立,理由見解析;
(3)
【解析】
(1)根據(jù)等邊三角形的性質(zhì),,,可得是等邊三角形,是的中點,利用等邊三角形三線合一性質(zhì),以及得出,所以PD是中位線,得出點D是BC的中點,AD=CE,可得出結(jié)論.
(2)作輔助線,延長ED到F,使得,使得是等邊三角形,PD是的中位線,通過證明三角形全等得出可證明結(jié)論.
(3)作出等腰,由旋轉(zhuǎn)模型證明三角形,利用P、C、K三點共線時,PK最大,即PD最大可求解得.
(1)根據(jù)圖1,在等邊和等腰中,
,,
,,
是等邊三角形,
是的中點,
,
,,
PD是中位線
分別是的中點,
,
故答案為:.
(2)結(jié)論成立.
理由:如下圖中,延長ED到F,使得,連接FC,BF,
,
是等邊三角形,
,
在和中
,
,
,
故答案為:結(jié)論成立;
(3)作,且,
連接PK,DK,
則為等腰三角形,
在和中
,
,
即為定值.
P、C、K三點共線時,PK最大,即PD最大,
此時,,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A,B兩地相距120千米,甲乙兩人沿同一條公路勻速行駛,甲騎自行車以20千米/時從A地前往B地,同時乙騎摩托車從B地前往A地,設(shè)兩人之間的距離為s(千米),甲行駛的時間為t(小時),若s與t的函數(shù)關(guān)系如圖所示,則下列說法錯誤的是( )
A.經(jīng)過2小時兩人相遇
B.若乙行駛的路程是甲的2倍,則t=3
C.當(dāng)乙到達終點時,甲離終點還有60千米
D.若兩人相距90千米,則t=0.5或t=4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計算,他銷售10斤A級別和20斤B級別茶葉的利潤為4000元,銷售20斤A級別和10斤B級別茶葉的利潤為3500元
(1)分別求出每斤A級別茶葉和每斤B級別茶葉的銷售利潤;
(2)若該經(jīng)銷商一次購進兩種級別的茶葉共200斤用于出口.設(shè)購買A級別茶葉a斤(70≤a≤120),銷售完A、B兩種級別茶葉后獲利w元.
①求出w與a之間的函數(shù)關(guān)系式;
②該經(jīng)銷商購進A、B兩種級別茶葉各多少斤時,才能獲取最大的利潤,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作圓的內(nèi)接正方形”的尺規(guī)作圖過程。
已知:⊙O.
求作:圓的內(nèi)接正方形.
如圖,
(1)過圓心O作直線AC,與⊙O相交于A,C兩點;
(2)過點O作直線BD⊥AC,交⊙O于B,D兩點;
(3)連接AB,BC,CD,DA。
∴四邊形ABCD為所求。
請回答:該尺規(guī)作圖的依據(jù)是____________________________。(寫出兩條)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班數(shù)學(xué)興趣小組對不等式組,討論得到以下結(jié)論:①若a=5,則不等式組的解集為3<x≤5;②若a=2,則不等式組無解;③若不等式組無解,則a的取值范圍為a<3;④若不等式組只有兩個整數(shù)解,則a的值可以為5.1,其中,正確的結(jié)論的序號是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】漣水外賣市場競爭激烈,美團、餓了么等公司訂單大量增加,某公司負(fù)責(zé)招聘外賣送餐員,具體方案如下:每月不超出750單,每單收入4元;超出750單的部分每單收入m元.
(1)若某“外賣小哥”某月送了500單,收入 元;
(2)若“外賣小哥”每月收入為y(元),每月送單量為x單,y與x之間的關(guān)系如圖所示,求y與x之間的函數(shù)關(guān)系式;
(3)若“外賣小哥”甲和乙在某個月內(nèi)共送單1200單,且甲送單量低于乙送單量,共收入5000元,問:甲、乙送單量各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△和△中,,和分別為邊和邊上的中線,再從以下三個條件:①;②;③中任取兩個為已知條件,另一個為結(jié)論,則最多可以構(gòu)成_______個正確的命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖, 是半圓的直徑,D是半圓上的一個動點(點D不與點A,B 重合),
(1)求證:AC是半圓的切線;
(2)過點O作BD的平行線,交AC于點E,交AD于點F,且EF=4, AD=6, 求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數(shù)為______;
②線段AD,BE之間的數(shù)量關(guān)系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數(shù)及線段CM,AE,BE之間的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com