【題目】如圖所示,在ABCD中,AE平分∠BAD交BC邊于E,EF⊥AE交CD于F.
(1)求證:CE=CF;
(2)延長(zhǎng)AD、EF交于點(diǎn)H,延長(zhǎng)BA到G,使AG=CF,若AD=7,DF=3,EH=2AE,求GF的長(zhǎng).
【答案】(1)見解析;(2)GF=4.
【解析】
(1)由題意可得:∠DAE=∠BAE=∠AEB=∠BAD=∠C,則∠C+∠FEC=90°,根據(jù)三角形內(nèi)角和可得∠C+∠EFC=90°,則∠CEF=∠CFE,即可得結(jié)論;
(2)連接AC,作AP⊥BC于P,由題意可求AB=BE=CD=5,CE=CF=2,即可求DH=3,根據(jù)勾股定理可求AE的長(zhǎng),根據(jù)勾股定理可列出方程,可求出 BP,AP,PE,PC的長(zhǎng)度,再根據(jù)勾股定理可求AC的長(zhǎng),由題意可證AC=GF,即可得GF的長(zhǎng).
(1)∵四邊形ABCD是平行四邊形,
∴∠BAD=∠C,AD∥BC,
∴∠DAE=∠AEB,
∵AE平分∠DAB,
∴∠BAE=∠DAE=∠BAD,
∴∠BAE=∠AEB=∠BAD,
∴AB=BE,
∵AE⊥EF,
∴∠AEF=90°,
∴∠AEB+∠FEC=90°,即∠BAD+∠FEC=90°,
∴∠C+∠FEC=90°,
∵∠C+∠FEC+∠EFC=180°,
∴∠C+∠EFC=90°,
∴∠EFC=∠FEC,
∴CE=CF;
(2)如圖連接AC,作AP⊥BC于P,
∵四邊形ABCD是平行四邊形,
∴AB=CD,AD=BC=7,AB∥CD,
∵CE=CF,
∴BC﹣BE=CD﹣DF,且AB=BE=CD,
∴7﹣AB=AB﹣3,
∴AB=5=BE=CD,
∴CE=CF=2,
∵AD∥BC,
∴∠H=∠FEC,且∠FEC=∠EFC,∠DFH=∠EFC,
∴∠H=∠DFH,
∴DH=DF=3,
∴AH=10,
在Rt△AEH中,AH2=AE2+EH2,且EH=2AE,
∴5AE2=100,
∴AE=2,
在Rt△ABP和Rt△APE中,
AP2=AB2﹣BP2,AP2=AE2﹣PE2.
∴AB2﹣BP2=AE2﹣PE2.
∴25﹣BP2=20﹣(5﹣BP)2.
∴BP=3,
∴AP=4,PE=2,PC=4,
在Rt△APC中,AC==4,
∵AB∥CD,AG=CF,
∴四邊形AGFC是平行四邊形,
∴GF=AC=4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】體育文化用品商店購(gòu)進(jìn)籃球和排球共20個(gè),進(jìn)價(jià)和售價(jià)如下表所示,全部銷售完后共獲利潤(rùn)260元.
(1)購(gòu)進(jìn)籃球和排球各多少個(gè)?
(2)銷售6個(gè)排球的利潤(rùn)與銷售幾個(gè)籃球的利潤(rùn)相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一條長(zhǎng)為18的繩子圍成一個(gè)等腰三角形.
(1)若等腰三角形有一條邊長(zhǎng)為4,它的其它兩邊是多少?
(2)若等腰三角形的三邊長(zhǎng)都為整數(shù),請(qǐng)直接寫出所有能圍成的等腰三角形的腰長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)全等的含30°、60°角的三角板ADE和三角板ABC放置在一起,∠DEA=∠ACB=90°,∠DAE=∠ABC=30°,E、A、C三點(diǎn)在一條直線上,連接BD,取BD中點(diǎn)M,連接ME、MC,試判斷△EMC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)七、八年級(jí)各選派10名選手參加學(xué)校舉辦的“愛我荊門”知識(shí)競(jìng)賽,計(jì)分采用10分制,選手得分均為整數(shù),成績(jī)達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競(jìng)賽后,七、八年級(jí)兩支代表隊(duì)選手成績(jī)分布的條形統(tǒng)計(jì)圖和成績(jī)統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a,b.
隊(duì)別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級(jí) | 6.7 | m | 3.41 | 90% | n |
八年級(jí) | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a,b的值;
(2)直接寫出表中的m,n的值;
(3)有人說(shuō)七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí),所以七年級(jí)隊(duì)成績(jī)比八年級(jí)隊(duì)好,但也有人說(shuō)八年級(jí)隊(duì)成績(jī)比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績(jī)好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長(zhǎng)線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則DF的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用圓規(guī)和直尺在AC上作點(diǎn)P,使點(diǎn)P到A、B的距離相等.(保留作圖痕跡,不寫作法和證明)
(2)當(dāng)滿足(1)的點(diǎn)P到AB、BC的距離相等時(shí),求∠A的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在邊長(zhǎng)為4cm正方形 ABCD 中,點(diǎn)P從點(diǎn)A出發(fā),沿AB→BC的路徑勻速運(yùn)動(dòng),到點(diǎn)C停止.過(guò)點(diǎn)P作PQ∥BD,PQ與邊AD(或邊CD)交于點(diǎn)Q,PQ的長(zhǎng)度y(cm)與點(diǎn)P的運(yùn)動(dòng)時(shí)圖象如圖②所示.當(dāng)P運(yùn)動(dòng)2.5s時(shí),PQ的長(zhǎng)為( )
A.cmB.cmC.cmD.cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個(gè)幾何體可以是圖2中甲,乙,丙中的______;
這個(gè)幾何體最多由______個(gè)小正方體堆成,最少由______個(gè)小正方體堆成;
請(qǐng)?jiān)趫D3中用陰影部分畫出符合最少情況時(shí)的一個(gè)從上面往下看得到的圖形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com