【題目】復習課中,教師給出關于x的函數(shù)y=﹣2mx+m﹣1(m≠0).學生們在獨立思考后,給出了5條關于這個函數(shù)的結論: ①此函數(shù)是一次函數(shù),但不可能是正比例函數(shù);
②函數(shù)的值y 隨著自變量x的增大而減;
③該函數(shù)圖象與y軸的交點在y軸的正半軸上;
④若函數(shù)圖象與x軸交于A(a,0),則a<0.5;
⑤此函數(shù)圖象與直線y=4x﹣3、y軸圍成的面積必小于0.5.
對于以上5個結論是正確有( )個.
A.4
B.3
C.2
D.0

【答案】D
【解析】解:此函數(shù)是一次函數(shù),當m=1時,它是正比例函數(shù),所以①錯誤;

當m>0時,函數(shù)的值y 隨著自變量x的增大而減小,所以②錯誤;

當m>1時,該函數(shù)圖象與y軸的交點在y軸的正半軸上,所以③錯誤;

若函數(shù)圖象與x軸交于A(a,0),令y=0,則﹣2mx+m﹣1=0,解得x= = ,當m>0時,a<0.5,所以④錯誤;

此函數(shù)圖象與直線y=4x﹣3的交點坐標為( ,﹣1),此直線與y軸的交點坐標為(0,m﹣1),直線y=4x﹣3與y軸的交點坐標為(0,﹣3),所以此函數(shù)圖象與直線y=4x﹣3、y軸圍成的面積= |m﹣1+3| = |m+2|,當m=2時,面積為1,所以⑤錯誤.

故選D.

【考點精析】本題主要考查了一次函數(shù)的性質的相關知識點,需要掌握一般地,一次函數(shù)y=kx+b有下列性質:(1)當k>0時,y隨x的增大而增大(2)當k<0時,y隨x的增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】小明從家到圖書館看報然后返回,他離家的距離y與離家的時間x之間的對應關系如圖所示,如果小明在圖書館看報30分鐘,那么他離家50分鐘時離家的距離為 km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于正數(shù)x,規(guī)定f(x)= 1 1 + x ,例如f(2)= 1 1 + 2 = 1 3 ,f( 1 4 )= 1 1 + 1 4 = 4 5 ,則f(2015)+f(2014)+…+f(2)+f(1)+f( 1 2 )+…+f()+f ()的值是( 。
A.2014
B.2015
C.2014.5
D.2015.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了豐富學生的校園生活,準備購進一批籃球和足球.其中籃球的單價比足球的單價多40元,用1500元購進的籃球個數(shù)與900元購進的足球個數(shù)相等.
(1)籃球和足球的單價各是多少元?
(2)該校打算用1000元購買籃球和足球,問恰好用完1000元,并且籃球、足球都買有的購買方案有哪幾種?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明隨機調查了若干市民租用共享單車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(A:0t10,B:10t20,C:20t30,D:t30),根據(jù)圖中信息,解答下列問題:

(1)這項被調查的總人數(shù)是多少人?

(2)試求表示A組的扇形統(tǒng)計圖的圓心角的度數(shù),補全條形統(tǒng)計圖;

(3)如果小明想從D組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用共享單車情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.則下列說法正確的是 .(寫出所有正確說法的序號)

當x=1.7時,[x]+(x)+[x)=6;

當x=﹣2.1時,[x]+(x)+[x)=﹣7;

方程4[x]+3(x)+[x)=11的解為1<x<1.5;

當﹣1<x<1時,函數(shù)y=[x]+(x)+x的圖象與正比例函數(shù)y=4x的圖象有兩個交點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知代數(shù)式6x﹣12與4+2x的值互為相反數(shù),那么x的值等于

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一個直角三角形紙片放置在平面直角坐標系中,點,點,點.是邊上的一點(點不與點重合),沿著折疊該紙片,得點的對應點.

(1)如圖,當點在第一象限,且滿足時,求點的坐標;

(2)如圖,當中點時,求的長;

(3)當時,求點的坐標(直接寫出結果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一元二次方程x(x﹣2)=2﹣x的正整數(shù)根是

查看答案和解析>>

同步練習冊答案