【題目】如圖,點(diǎn)G是正方形ABCD對(duì)角線CA的延長(zhǎng)線上任意一點(diǎn),以線段AG為邊作一個(gè)正方形AEFG,線段EB和GD相交于點(diǎn)H.
(1)求證:EB=GD;
(2)判斷EB與GD的位置關(guān)系,并說(shuō)明理由;
(3)若AB=2,AG= ,求EB的長(zhǎng).
【答案】
(1)證明:在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD
∴∠GAD=∠EAB,
∵四邊形EFGA和四邊形ABCD是正方形,
∴AG=AE,AB=AD,
在△GAD和△EAB中,
,
∴△GAD≌△EAB(SAS),
∴EB=GD;
(2)解:EB⊥GD.
理由如下:∵四邊形ABCD是正方形,
∴∠DAB=90°,
∴∠AMB+∠ABM=90°,
又∵△AEB≌△AGD,
∴∠GDA=∠EBA,
∵∠HMD=∠AMB(對(duì)頂角相等),
∴∠HDM+∠DMH=∠AMB+∠ABM=90°,
∴∠DHM=180°﹣(∠HDM+∠DMH)=180°﹣90°=90°,
∴EB⊥GD.
(3)解:連接AC、BD,BD與AC交于點(diǎn)O,
∵四邊形ABCD是正方形,
∴BD⊥CG,
∵AB=AD=2,在Rt△ABD中,DB= ,
在Rt△AOB中,OA=OB,AB=2,由勾股定理得:2AO2=22,
OA= ,
即OG=OA+AG= + =2 ,
∴EB=GD= .
【解析】(1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,得到∠GAD=∠EAB從而△GAD≌△EAB,即EB=GD;(2)EB⊥GD,由(1)得∠ADG=∠ABE則在△BDH中,∠DHB=90°所以EB⊥GD;(3)設(shè)BD與AC交于點(diǎn)O,由AB=AD=2在Rt△ABD中求得DB,所以得到結(jié)果.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對(duì)正方形的性質(zhì)的理解,了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,BC=12cm,點(diǎn)D在AC上,DC=4cm.將線段DC沿著CB的方向平移7cm得到線段EF,點(diǎn)E,F(xiàn)分別落在邊AB,BC上,則△EBF的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算中,正確的是( 。
A.(﹣2)0=1B.20=﹣2
C.a3a2=a6D.(1﹣2a)2=1﹣4a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【知識(shí)鏈接】 有理化因式:兩個(gè)含有根式的非零代數(shù)式相乘,如果它們的積不含有根式,那么這兩個(gè)代數(shù)式相互叫做有理化因式.
例如: 的有理化因式是 ;1﹣ 的有理化因式是1+ .
分母有理化:分母有理化又稱“有理化分母”,也就是把分母中的根號(hào)化去.指的是如果代數(shù)式中分母有根號(hào),那么通常將分子、分母同乘以分母的有理化因式,達(dá)到化去分母中根號(hào)的目的.如:
= = ﹣1, = = ﹣ .
(1)【知識(shí)理解】 填空:2 的有理化因式是;
直接寫(xiě)出下列各式分母有理化的結(jié)果:
① =;② = .
(2)【啟發(fā)運(yùn)用】 計(jì)算: + + +…+ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和點(diǎn)B為圓心,以相同的長(zhǎng)(大于 AB)為半徑作弧,兩弧相交于點(diǎn)M和點(diǎn)N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E.若AC=3,AB=5,則DE等于( )
A.2
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.
(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;
(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(dòng)(不與點(diǎn)B,C重合),過(guò)點(diǎn)N作NM∥AC,交AB于點(diǎn)M,當(dāng)△AMN面積最大時(shí),求N點(diǎn)的坐標(biāo);
(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)圖形和它經(jīng)過(guò)平移所得的圖形中,兩組對(duì)應(yīng)點(diǎn)所連的線段的關(guān)系是( )
A.平行B.相等
C.平行(或在同一條直線上)且相等D.既不平行,又不相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】生活中太陽(yáng)能熱水器已經(jīng)慢慢普及使用.在利用太陽(yáng)能熱水器來(lái)加熱水的過(guò)程中,熱水器里的水溫隨所曬太陽(yáng)時(shí)間的長(zhǎng)短而變化,這個(gè)問(wèn)題中因變量是( )
A.太陽(yáng)光的強(qiáng)弱B.水的溫度C.曬太陽(yáng)的時(shí)間D.熱水器
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com