【題目】如圖,均勻的正四面體的各面依次標(biāo)有1,2,3,4四個(gè)數(shù)字.小明做了60次投擲試驗(yàn),結(jié)果統(tǒng)計(jì)如下:

朝下數(shù)字

1

2

3

4

出現(xiàn)的次數(shù)

16

20

14

10

(1)計(jì)算上述試驗(yàn)中“4朝下”的頻率是   ;

(2)隨機(jī)投擲正四面體兩次,請(qǐng)用列表或畫樹狀圖法,求兩次朝下的數(shù)字之和大于4的概率.

【答案】解:(1“4朝下的頻率:,

2)隨機(jī)投擲正四面體兩次,所有可能出現(xiàn)的結(jié)果如下:

第一次
第二次

1

2

3

4

1

1,1

21

3,1

4,1

2

1,2

2,2

3,2

4,2

3

1,3

2,3

3,3

4,3

4

1,4

2,4

3,4

44

總共有16種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,而兩次朝下數(shù)字之和大于4的結(jié)果有10種.

∴P(兩次朝下的數(shù)字之和大于4=

【解析】

試題(1)根據(jù)試驗(yàn)中“4朝下的總次數(shù)除以總數(shù)即可得出答案;

2)列表列舉出所有的可能的結(jié)果,然后利用概率公式解答即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,在我們進(jìn)入高中以后,將還會(huì)學(xué)到下面三角函數(shù)公式:

sin (αβ)sinαcosβcosαsinβ,

cos (αβ)cosαcosβsinαsinβ

例:sin 15°sin (45°30°)sin 45°cos 30°cos 45°sin 30°

(1)試仿照例題,求出cos 15°的準(zhǔn)確值;

(2)我們知道,tanα,試求出tan 15°的準(zhǔn)確值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣a(x+1)(x﹣3)(a>0)x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.拋物線的對(duì)稱軸與x軸交于點(diǎn)E,過點(diǎn)Cx軸的平行線,與拋物線交于點(diǎn)D,連接DE,延長DEy軸于點(diǎn)F,連接AD、AF.

(1)點(diǎn)A的坐標(biāo)為____________,點(diǎn)B的坐標(biāo)為_________ ;

(2)判斷四邊形ACDE的形狀,并給出證明;

(3)當(dāng)a為何值時(shí),ADF是直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,AB是⊙O的直徑,AE是弦,OGAE于點(diǎn)G,交⊙O 于點(diǎn)D,連結(jié)BDAE于點(diǎn)F,延長AE至點(diǎn)C,連結(jié)BC

(1)當(dāng)BC=FC時(shí),證明:BC是⊙O的切線;

(2)已知⊙O的半徑,當(dāng)tanA=,求GF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yy在第一象限內(nèi)的圖象如圖,點(diǎn)Py的圖象上一動(dòng)點(diǎn),PCx軸于點(diǎn)C,交y的圖象于點(diǎn)B.給出如下結(jié)論:①△ODBOCA的面積相等;②PAPB始終相等;③四邊形PAOB的面積大小不會(huì)發(fā)生變化;④CAAP.其中所有正確結(jié)論的序號(hào)是( 。

A. ①②③ B. ②③④ C. ①③④ D. ①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120cm,高AD=80cm,要把它加工成一個(gè)矩形零件,使矩形PQMN的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB、AC上.設(shè)PQxcm,矩形PQMN的面積為ycm2,請(qǐng)寫出y關(guān)于x的函數(shù)表達(dá)式(并注明x的取值范圍)_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“2018東臺(tái)西溪半程馬拉松”的賽事共有兩項(xiàng):A、“半程馬拉松”、 B、“歡樂跑”。小明參加了該項(xiàng)賽事的志愿者服務(wù)工作, 組委會(huì)隨機(jī)將志愿者分配到兩個(gè)項(xiàng)目組.

(1)小明被分配到“半程馬拉松”項(xiàng)目組的概率為________

(2)為估算本次賽事參加“半程馬拉松”的人數(shù),小明對(duì)部分參賽選手作如下調(diào)查:

調(diào)查總?cè)藬?shù)

20

50

100

200

500

參加“半程馬拉松”人數(shù)

15

33

72

139

356

參加“半程馬拉松”頻率

0.750

0.660

0.720

0.695

0.712

①請(qǐng)估算本次賽事參加“半程馬拉松”人數(shù)的概率為_______.(精確到0.1)

②若本次參賽選手大約有3000人,請(qǐng)你估計(jì)參加“半程馬拉松”的人數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng),為了吸引顧客,在白色情人節(jié)當(dāng)天舉辦了商品有獎(jiǎng)酬賓活動(dòng),凡購物滿200元者,有兩種獎(jiǎng)勵(lì)方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色(如表)決定送禮金券的多少.

兩紅

一紅一白

兩白

禮金券(元)

18

24

18

1)請(qǐng)你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.

2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇哪種方案較為實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中:①ac0;②方程ax2+bx+c0的根是x1=﹣1x23;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減小;⑤2ab0;⑥b24ac0.下列結(jié)論一定成立的是(

A. ①②④⑥ B. ①②③⑥ C. ②③④⑤⑥ D. ①②③④

查看答案和解析>>

同步練習(xí)冊(cè)答案