【題目】如圖,E的斜邊AB上一點(diǎn),以AE為直徑的與邊BC相切于點(diǎn)D,交邊AC于點(diǎn)F,連結(jié)AD

1)求證:AD平分

2)若,,求的長.

【答案】1)證明見解析;(2

【解析】

1)連結(jié)OD,由切線的性質(zhì)及C=90°可得ODAC,進(jìn)而得CAD=∠ODA,再由OA=ODOAD=∠ODA,等量代換即可得證;

2)先由CAD=25°求得EOF=100°,再利用弧長公式計(jì)算即可.

1)如圖,連結(jié)OD

∵⊙O與邊BC相切于點(diǎn)D,

ODBC,

∴∠ODB=90°

∵∠C=90°,

∴∠C=∠ODB=90°,

ODAC

∴∠CAD=∠ODA

OA=OD,

∴∠OAD=∠ODA,

∴∠OAD=∠CAD

AD平分BAC

2)如圖,連結(jié)OF

AD平分BAC,且CAD=25°

∴∠EOF=100°,

的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某隧道截面示意圖,它是由拋物線和長方形構(gòu)成,已知米,米,拋物線頂點(diǎn)D到地面OA的垂直距離為10米,以OA所在直線為x軸,以OB所在直線為y軸建立直角坐標(biāo)系.

求拋物線的解析式;

由于隧道較長,需要在拋物線型拱壁上需要安裝兩排燈,使它們到地面的高度相同,如果燈離地面的高度不超過8米,那么兩排燈的水平距離最小是多少米?

一輛特殊貨運(yùn)汽車載著一個長方體集裝箱,集裝箱寬為4m,最高處與地面距離為6m,隧道內(nèi)設(shè)雙向行車道,雙向行車道間隔距離為,交通部門規(guī)定,車載貨物頂部距離隧道壁的豎直距離不少于,才能安全通行,問這輛特殊貨車能否安全通過隧道?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了緩解上學(xué)時校門口的交通壓力,某校隨機(jī)抽取了部分學(xué)生進(jìn)行了調(diào)查,來了解學(xué)生的到校方式,并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計(jì)圖表:

根據(jù)統(tǒng)計(jì)圖所提供的信息,解答下列問題:

(1)本次抽樣調(diào)查中的樣本容量是 ,= .

(2)扇形統(tǒng)計(jì)圖中學(xué)生到校方式是步行所對應(yīng)扇形的圓心角的度數(shù)是 .

(3)若該校共有1500名學(xué)生,請根據(jù)統(tǒng)計(jì)結(jié)果估計(jì)該校到校方式為乘車的學(xué)生人數(shù);

(4)現(xiàn)從四名采取不同到校方式的學(xué)生中抽取兩名學(xué)生進(jìn)行問卷調(diào)查,請你用列表或畫樹狀圖的方法,求出正好選到到校方式為騎車步行的兩名學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)造了一幅弦圖后人稱其為趙爽弦圖(如圖1).圖2是弦圖變化得到,它是用八個全等的直角三角形拼接而成,記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2,S3,若S1+S2+S3=10,求S2的值.以下是求S2的值的解題過程,請你根據(jù)圖形補(bǔ)充完整.

解:設(shè)每個直角三角形的面積為S

S1﹣S2=  (用含S的代數(shù)式表示)①

S2﹣S3=  (用含S的代數(shù)式表示)②

由①②得,S1+S3=  因?yàn)?/span>S1+S2+S3=10,

所以2S2+S2=10.

所以S2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點(diǎn)A到圖形G上各個點(diǎn)的距離的最小值稱為該點(diǎn)到這個圖形的最小距離d,點(diǎn)A到圖形G上各個點(diǎn)的距離的最大值稱為該點(diǎn)到這個圖形的最大距離D,定義點(diǎn)A到圖形G的距離跨度為R=D-d

1如圖1在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點(diǎn)到圖形G1的距離跨度

A1,0的距離跨度______________;

B-, 的距離跨度____________;

C-3-2的距離跨度____________;

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點(diǎn)組成的圖形的形狀是______________

2如圖2在平面直角坐標(biāo)系xOy,圖形G2為以D-10為圓心,2為半徑的圓直線y=kx-1上存在到G2的距離跨度為2的點(diǎn),k的取值范圍

3如圖3,在平面直角坐標(biāo)系xOy射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運(yùn)動,若射線OP上存在點(diǎn)到E的距離跨度為2求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于點(diǎn)Px,y)和Qx,y′),給出如下定義:如果y′=,那么稱點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.

例如:點(diǎn)(56)的“伴隨點(diǎn)”為點(diǎn)(5,6);點(diǎn)(﹣5,6)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).

1)直接寫出點(diǎn)A2,1)的“伴隨點(diǎn)”A′的坐標(biāo).

2)點(diǎn)Bm,m+1)在函數(shù)ykx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)ykx+3的解析式.

3)點(diǎn)C、D在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)C、D關(guān)于y軸對稱,點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CDDD′,求此時“伴隨點(diǎn)”D′的橫坐標(biāo).

4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1x2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m1m3),直接寫出實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°AC=4,△ABC繞點(diǎn)C順時針旋轉(zhuǎn)得△A1B1C,當(dāng)A1落在AB邊上時,連接B1B,取BB1的中點(diǎn)D,連接A1D,則A1D的長度是(  )

A.B.C.D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線軸交于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于

求點(diǎn)的坐標(biāo);

若點(diǎn)是拋物線在第二象限部分上的一動點(diǎn),其橫坐標(biāo)為為何值時,圖中陰影部分面積最小,并寫出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨(dú)加工一段時間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

同步練習(xí)冊答案