【題目】如圖,已知的直徑,、為的三等分點(diǎn),、為上兩點(diǎn),且,求的值.
【答案】
【解析】
延長ME交⊙O于G,根據(jù)圓的中心對稱性可得FN=EG,過點(diǎn)O作OH⊥MG于H,連接MO,根據(jù)圓的直徑求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根據(jù)垂徑定理可得MG=2MH,從而得解.
如圖,延長ME交⊙O于G,
∵E、F為AB的三等分點(diǎn),∠MEB=∠NFB=60°,
∴FN=EG,
過點(diǎn)O作OH⊥MG于H,連接MO,
∵⊙O的直徑AB=6,
∴OE=OA-AE=×6-×6=3-2=1,
OM=×6=3,
∵∠MEB=60°,
∴OH=OEsin60°=1×=,
在Rt△MOH中,MH= =,
根據(jù)垂徑定理,MG=2MH=2×=,
即EM+FN=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的對角線相交于點(diǎn),且,過點(diǎn)作交于點(diǎn),若的周長為20,則的周長為( )
A. 7B. 8C. 9D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在Rt△ABC中,∠ACB=90°,AC=6cm,動點(diǎn)P從點(diǎn)B出發(fā),沿折線B→A→C路線勻速運(yùn)動到C停止,動點(diǎn)Q從點(diǎn)C出發(fā),沿折線C→B→A路線勻速運(yùn)動到A停止,如點(diǎn)P、Q同時出發(fā)運(yùn)動t秒后,如圖(2)是△BPC的面積S1(cm2)與t(秒)的函數(shù)關(guān)系圖象,圖(3)是△AQC的面積S2(cm2)與t(秒)的函數(shù)關(guān)系圖象:
(1)點(diǎn)P運(yùn)動速度為 cm/秒;Q運(yùn)動的速度 cm/秒;
(2)連接PQ,當(dāng)t為何值時,PQ∥BC;
(3)如圖(4)當(dāng)運(yùn)動t(0≤t≤2)秒時,是否存在這樣的時刻,使以PQ為直徑的⊙O與Rt△ABC的一條邊相切,若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為2,則a的值是( )
A. 2B. 2+2C. 2D. 2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面點(diǎn)A處有一網(wǎng)球發(fā)射器向空中發(fā)射網(wǎng)球,網(wǎng)球飛行路線是一條拋物線,在地面上落點(diǎn)為B,有人在直線AB上點(diǎn)C(靠點(diǎn)B一側(cè))豎直向上擺放若干個無蓋的圓柱形桶.試圖讓網(wǎng)球落入桶內(nèi),已知AB=4米,AC=3米,網(wǎng)球飛行最大高度OM=5米,圓柱形桶的直徑為0.5米,高為0.3米(網(wǎng)球的體積和圓柱形桶的厚度忽略不計).當(dāng)豎直擺放圓柱形桶至少( )個時,網(wǎng)球可以落入桶內(nèi).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,PA是直徑,PC是弦,PH平分∠APB且與⊙O交于點(diǎn)H,過H作HB⊥PC交PC的延長線于點(diǎn)B.
(1)求證:HB是⊙O的切線;
(2)若HB=4,BC=2,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們縣是紫菜生產(chǎn)大縣,某景點(diǎn)商戶向游客推銷一種加工好的優(yōu)質(zhì)紫菜,已知每千克成本為20元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),該產(chǎn)品銷售量(千克)與銷售單價(元/千克)的變化而變化有如下關(guān)系式:.設(shè)這種紫菜在這段時間內(nèi)的銷售利潤為(元).
(1)求與的關(guān)系式;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定該景區(qū)這種紫菜的銷售單價不得高于28元/千克,該商戶每天能否獲得比150元更大的利潤?如果能請求出最大利潤,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,無人機(jī)航拍測量的應(yīng)用越來越廣泛.如圖,無人機(jī)從A處觀測得某建筑物頂點(diǎn)O時俯角為30°,繼續(xù)水平前行10米到達(dá)B處,測得俯角為45°,已知無人機(jī)的水平飛行高度為45米,則這棟樓的高度是多少米?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸分別交于,兩點(diǎn).
(1)求拋物線的表達(dá)式;
(2)在第二象限內(nèi)取一點(diǎn),作垂直軸于點(diǎn),連結(jié),且,.將沿軸向右平移個單位,當(dāng)點(diǎn)落在拋物線上時,求的值;
(3)在(2)的條件下,當(dāng)點(diǎn)第一次落在拋物線上時記為點(diǎn),點(diǎn)是拋物線對稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn),使以點(diǎn)、、、為頂點(diǎn)的四邊形是平行四邊形,若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com