解:(1)①連接CD,
∵∠ACB=90°,D為AB的中點,AC=BC,
∴CD=AD=BD,
又∵AC=BC,
∴CD⊥AB,
∴∠EDA+∠EDC=90°,∠DCF=∠DAE=45°,
∵DF⊥DE,
∴∠EDF=∠EDC+∠CDF=90°,
∴∠ADE=∠CDF,
在△ADE和△CDF中
∴△ADE≌△CDF,
∴DE=DF.
②連接DG,
∵∠ACB=90°,G為EF的中點,
∴CG=EG=FG,
∵∠EDF=90°,G為EF的中點,
∴DG=EG=FG,
∴CG=DG,
∴∠GCD=∠CDG
又∵CD⊥AB,
∴∠CDH=90°,
∴∠GHD+∠GCD=90°,∠HDG+∠GDC=90°,
∴∠GHD=∠HDG,
∴GH=GD,
∴CG=GH.
(2)如圖,當E在線段AC上時,
∵CG=GH=EG=GF,
∴CH=EF=5,
∵△ADE≌△CDF,
∴AE=CF=3,
∴在Rt△ECF中,由勾股定理得:
,
∴AC=AE+EC=3+4=7;
如圖,當E在線段CA延長線時,
AC=EC-AE=4-3=1,
綜合上述AC=7或1.
分析:(1)①連接CD,推出CD=AD,∠CDF=∠ADE,∠A=∠DCB,證△ADE≌△CDF即可;②連接DG,根據(jù)直角三角形斜邊上中線求出CG=EG=GF=DG,推出∠GCD=∠GDC,推出∠GDH=∠GHD,推出DG=GH即可;
(2)求出EF=5,根據(jù)勾股定理求出EC,即可得出答案.
點評:本題考查了等腰三角形性質(zhì)和判定,直角三角形斜邊上的中線,全等三角形的性質(zhì)和判定的應用,主要考查學生綜合運用定理進行推理的能力,有一定的難度.