【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動點(diǎn)P運(yùn)動到何處時,BP2=BDBC;
(3)當(dāng)△PCD的面積最大時,求點(diǎn)P的坐標(biāo).
【答案】
(1)解:由題意,得 ,
解得 ,
∴拋物線的解析式為y= ﹣x﹣4
(2)解:設(shè)點(diǎn)P運(yùn)動到點(diǎn)(x,0)時,有BP2=BDBC,
令x=0時,則y=﹣4,
∴點(diǎn)C的坐標(biāo)為(0,﹣4).
∵PD∥AC,
∴△BPD∽△BAC,
∴ .
∵BC= = =2 ,
AB=6,BP=x﹣(﹣2)=x+2.
∴BD= = = .
∵BP2=BDBC,
∴(x+2)2= ×2 ,
解得x1= ,x2=﹣2(﹣2不合題意,舍去),
∴點(diǎn)P的坐標(biāo)是( ,0),即當(dāng)點(diǎn)P運(yùn)動到( ,0)時,BP2=BDBC;
(3)解:∵△BPD∽△BAC,
∴ ,
∴ ×
S△PDC=S△PBC﹣S△PBD= ×(x+2)×4﹣
∵ ,
∴當(dāng)x=1時,S△PDC有最大值為3.
即點(diǎn)P的坐標(biāo)為(1,0)時,△PDC的面積最大.
【解析】(1)用待定系數(shù)法求出拋物線的解析式,把A(4,0)、B(﹣2,0)兩點(diǎn),代入拋物線y=ax2+bx﹣4即可;(2)求出點(diǎn)C的坐標(biāo)為(0,﹣4),由PD∥AC,得到△BPD∽△BAC,得到比例,由勾股定理得到BC= ,求出BD的值,由BP2=BDBC,求出點(diǎn)P的坐標(biāo)是( img src="http://thumb.1010pic.com/questionBank/Upload/2018/02/24/00/3e4277fa/SYS201802240015451442469337_DA/SYS201802240015451442469337_DA.012.png" width="9" height="32" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> ,0),即當(dāng)點(diǎn)P運(yùn)動到( ,0)時,BP2=BDBC;(3)由△BPD∽△BAC,得到 , ;S△PDC=S△PBC﹣S△PBD ,得到當(dāng)x=1時,S△PDC有最大值為3,即點(diǎn)P的坐標(biāo)為(1,0)時,△PDC的面積最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時出發(fā)向點(diǎn)O運(yùn)動(運(yùn)動到點(diǎn)O停止),運(yùn)動速度分別是1個單位長度/秒和 個單位長度/秒,設(shè)運(yùn)動時間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長;
(3)當(dāng)四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對“學(xué)生在學(xué)校拿手機(jī)影響學(xué)習(xí)的情況”進(jìn)行了調(diào)查,隨機(jī)調(diào)查了部分學(xué)生,對此問題的看法分為三種情況:沒有影響、影響不大、影響很大,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖,根據(jù)統(tǒng)計圖表提供的信息,解答下列問題:
人數(shù)統(tǒng)計表如下:
看法 | 沒有影響 | 影響不大 | 影響很大 |
學(xué)生人數(shù)(人) | 20 | 30 | a |
(1)統(tǒng)計表中的a= ;
(2)請根據(jù)表中的數(shù)據(jù),談?wù)勀愕目捶ǎú簧儆?/span>2條)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫出平移后對應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請在圖中標(biāo)明旋轉(zhuǎn)中心P的位置并寫出其坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,∠C=90°,BC=3,D,E分別在AB、AC上,將△ADE沿DE翻折后,點(diǎn)A落在點(diǎn)A′處,若A′為CE的中點(diǎn),則折痕DE的長為( )
A.
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一等腰直角三角形紙片,以它的對稱軸為折痕,將三角形對折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,點(diǎn)為平面上一點(diǎn),連接與.
(1)如圖1,點(diǎn)在直線、之間,當(dāng),時,求.
(2)如圖2,點(diǎn)在直線、之間左側(cè),與的角平分線相交于點(diǎn),寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點(diǎn)落在下方,與的角平分線相交于點(diǎn),與有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店甲、乙兩種商品三天銷售情況的賬目記錄如下表:
日期 | 賣出甲商品的數(shù)量(個) | 賣出乙商品的數(shù)量(個) | 收入(元) |
第一天 | 39 | 21 | 321 |
第二天 | 26 | 14 | 204 |
第三天 | 39 | 25 | 345 |
(1)財務(wù)主管在核查時發(fā)現(xiàn):第一天的賬目正確,但其他兩天的賬目有一天有誤,請你判斷第幾天的賬目有誤,并說明理由;
(2)求甲、乙兩種商品的單價.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com