【題目】如圖,∠ABM為直角,點C為線段BA的中點,點D是射線BM上的一個動點(不與點B重合),連接AD,作BE⊥AD,垂足為E,連接CE,過點E作EF⊥CE,交BD于F.
(1)求證:BF=FD;
(2)點D在運動過程中能否使得四邊形ACFE為平行四邊形?如不能,請說明理由;如能,求出此時∠A的度數(shù).
【答案】
(1)證明:∵BE⊥AD,
∴∠AEB=90°,
在Rt△AEB中,∵點C為線段BA的中點,
∴CE= AB=CB,
∴∠CEB=∠CBE.
∵∠CEF=∠CBF=90°,
∴∠BEF=∠EBF,
∴EF=BF.
∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,
∴∠FED=∠EDF,
∵EF=FD.
∴BF=FD
(2)能.理由如下:
若四邊形ACFE為平行四邊形,則AC∥EF,AC=EF,
∴BC=BF,
∴BA=BD,∠A=45°.
∴當(dāng)∠A=45°時四邊形ACFE為平行四邊形.
【解析】(1)由直角三角形斜邊上的中線性質(zhì)得出CE=CB,由等腰三角形的性質(zhì)和直角三角形的性質(zhì)證出EF=BF,EF=FD,即可得出結(jié)論.(2)假設(shè)點D在運動過程中能使四邊形ACFE為平行四邊形,則AC∥EF,AC=EF,由(1)知AC=CB= AB,EF=BF= BD,則BC=EF=BF,即BA=BD,∠A=45°.
【考點精析】掌握平行四邊形的判定是解答本題的根本,需要知道兩組對邊分別平行的四邊形是平行四邊形:兩組對邊分別相等的四邊形是平行四邊形;一組對邊平行且相等的四邊形是平行四邊形;兩組對角分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在平面直角坐標(biāo)系內(nèi),頂點的坐標(biāo)分別為A(﹣1,5),B(﹣4,1),C(﹣1,1)將△ABC繞點A逆時針旋轉(zhuǎn)90°,得到△AB′C′,點B,C的對應(yīng)點分別為點B′,C′,
(1)畫出△AB′C′;
(2)寫出點B′,C′的坐標(biāo);
(3)求出在△ABC旋轉(zhuǎn)的過程中,點C經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)y= (x>0)的圖象與BC邊交于點E.
(1)當(dāng)F為AB的中點時,求該函數(shù)的解析式;
(2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( )
A. a2+a3=2a5 B. 3a+2b=5ab C. 5y-3y=2 D. 3x2y-2yx2=x2y
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 絕對值是它本身的數(shù)只有0 B. 如果幾個數(shù)積為0,那么至少有一個因數(shù)為0
C. 整數(shù)只包括正整數(shù)和負(fù)整數(shù) D. -1是最大的負(fù)有理數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】日前,中國兒童文學(xué)作家曹文軒榮獲2016年國際兒童讀物聯(lián)盟(IBBY)國際安徒生獎,新安書店抓住契機(jī),以每本20元的價格購進(jìn)一批暢銷書《曹文軒作品集》.銷售過程中發(fā)現(xiàn),每月銷售量y(本)與銷售單價x(元)之間的關(guān)系如下表所示,按照表中y與x的關(guān)系規(guī)律,解決下面的問題:
(1)試求出y與x的函數(shù)關(guān)系式。
(2)銷售單價在什么范圍時,書店能盈利?
(3)如果想要每月獲得的利潤不低于2000元,那么該書店每月的成本最少需要多少元?(成本=每本進(jìn)價×銷售量)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com