如圖,已知點(diǎn)M是以AB為直徑的半圓上的一個(gè)三等分點(diǎn),點(diǎn)N是弧BM的中點(diǎn),點(diǎn)P是直徑AB上的點(diǎn).若⊙O的半徑為1.
(1)用尺規(guī)在圖中作出點(diǎn)P,使MP+NP的值最。ūA糇鲌D痕跡,不寫作法);
(2)求MP+NP的最小值.
分析:(1)作點(diǎn)M關(guān)于直線AB的對(duì)稱點(diǎn)M′,連接M′N交直徑AB于點(diǎn)P,則點(diǎn)P即為所求點(diǎn),M′N的長(zhǎng)即為MP+NP的最小值;
(2)連接OM′,ON,先判斷出△OM′N的形狀,再根據(jù)勾股定理求解即可.
解答:解:(1)如圖1所示;

(2)如圖2,連接OM′,ON,
∵點(diǎn)M是以AB為直徑的半圓上的一個(gè)三等分點(diǎn),點(diǎn)N是弧BM的中點(diǎn),
∴∠BON=360°×
1
12
=30°,
∠M′OB=360°×
1
6
=60°,
∴∠M′ON=90°,
∴△OM′N是等腰直角三角形,
∴M′N=
ON2+OM2
=
12+12
=
2
點(diǎn)評(píng):本題考查的是軸對(duì)稱-最短路線問(wèn)題,熟知兩點(diǎn)之間,線段最短是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A是以MN為直徑的半圓上一個(gè)三等分點(diǎn),點(diǎn)B是AN的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn),若⊙O的半徑為1,則AP+BP的最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng))如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連接AE并延長(zhǎng)交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A是以MN為直徑的半圓上一個(gè)三等分點(diǎn),點(diǎn)B是
AN
的中點(diǎn),點(diǎn)P是半徑ON上的點(diǎn).若⊙O的半徑為l,則AP+BP的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川德陽(yáng)卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,已知點(diǎn)C是以AB為直徑的⊙O上一點(diǎn),CH⊥AB于點(diǎn)H,過(guò)點(diǎn)B作⊙O 的切線交直線AC于點(diǎn)D,點(diǎn)E為CH的中點(diǎn),連結(jié)并延交BD于點(diǎn)F,直線CF交AB的延長(zhǎng)線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案