如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O 的切線交直線AC于點D,點E為CH的中點,連結(jié)并延交BD于點F,直線CF交AB的延長線于G.
⑴求證:AE·FD=AF·EC;
⑵求證:FC=FB;
⑶若FB=FE=2,求⊙O 的半徑r的長.

(1)證明:∵BD是⊙O的切線,∴∠DBA=90°。
∵CH⊥AB,∴CH∥BD!唷鰽EC∽△AFD。
!郃E•FD=AF•EC。
(2)證明:∵CH∥BD,∴△AEC∽△AFD,△AHE∽△ABF!。
∵CE=EH(E為CH中點),∴BF=DF。
∵AB為⊙O的直徑,∴∠ACB=∠DCB=90°!郈F=DF=BF,即CF=BF。
(3)解:∵BF=CF=DF(已證),EF=BF=2,∴EF=FC!唷螰CE=∠FEC。
∵∠AHE=∠CHG=90°,∴∠FAH+∠AEH=90°,∠G+∠GCH=90°。
∵∠AEH=∠CEF,∴∠G=∠FAG。∴AF=FG。
∵FB⊥AG,∴AB=BG。
連接OC,BC,

∵BF切⊙O于B,∴∠FBC=∠CAB。
∵OC=OA,CF=BF,
∴∠FCB=∠FBC,∠OCA=∠OAC
∴∠FCB=∠CAB。
∵∠ACB=90°,∴∠ACO+∠BCO=90°!唷螰CB+∠BCO=90°,即OC⊥CG。
∴CG是⊙O切線。
∵GBA是⊙O割線,F(xiàn)B=FE=2,由切割線定理得:(2+FG)2=BG×AG=2BG2,
【注,沒學切割線定理的可由△AGC∽△CGB求得】
在Rt△BFG中,由勾股定理得:BG2=FG2﹣BF2,∴FG2﹣4FG﹣12=0。
解得:FG=6,F(xiàn)G=﹣2(舍去)。
由勾股定理得:AB=BG=
∴⊙O的半徑r是。

解析

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是AN的中點,點P是半徑ON上的點,若⊙O的半徑為1,則AP+BP的最小值為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•德陽)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.
(1)求證:AE•FD=AF•EC;
(2)求證:FC=FB;
(3)若FB=FE=2,求⊙O的半徑r的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A是以MN為直徑的半圓上一個三等分點,點B是
AN
的中點,點P是半徑ON上的點.若⊙O的半徑為l,則AP+BP的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點M是以AB為直徑的半圓上的一個三等分點,點N是弧BM的中點,點P是直徑AB上的點.若⊙O的半徑為1.
(1)用尺規(guī)在圖中作出點P,使MP+NP的值最。ūA糇鲌D痕跡,不寫作法);
(2)求MP+NP的最小值.

查看答案和解析>>

同步練習冊答案