精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線AB、CD相交于點O,OE平分∠BOD

1∠AOC=70°∠DOF=90°,求∠EOF的度數;

2OF平分∠COE,∠BOF=15°,若設∠AOE=x°

用含x的代數式表示∠EOF;

∠AOC的度數.

【答案】(1)55°;(2)①FOE=x;②100°.

【解析】試題分析:(1)、根據對頂角的性質得出∠BOD的度數,根據直角和角平分線的性質求出∠BOF和∠BOE的度數,從而根據∠EOF=∠BOF+∠BOD得出答案;(2)、根據角平分線的性質得出∠BOE=∠DOE,根據平角的性質得出∠COE=∠AOE,最后根據角平分線的性質得出∠FOE的度數;根據題意得出∠BOE= -15°,根據∠BOE+∠AOE=180°求出x的值,最后根據∠AOC=2∠BOE得出答案.

試題解析:解:(1)由對頂角相等可知:∠BOD=∠AOC=70°,

∵∠FOB=∠DOF﹣∠BOD,∴∠FOB=90°﹣70°=20°,

∵OE平分∠BOD,∴∠BOE=BOD=×70°=35°,

∴∠EOF=∠FOB+∠BOE=35°+20°=55°,

(2)①∵OE平分∠BOD,

∴∠BOE=∠DOE,

∵∠BOE+∠AOE=180°,∠COE+∠DOE=180°,

∴∠COE=∠AOE=x,

∵OF平分∠COE, ∴∠FOE=x;

∵∠BOE=FOE﹣FOB,∴∠BOE=x﹣15°,

∵∠BOE+AOE=180°,x ﹣15°+x=180°,解得:x=130°,

∴∠AOC=2∠BOE=2×180°﹣130°=100°

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,并且關于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數根,下列結論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數有(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M、N分別為AC、BC的中點.

(1)求線段BC的長;

(2)求線段MN的長;

(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點,你能猜想MN的長度嗎?請寫出你的結論(不需要說明理由).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABCABC中,AB=AB′,B=B,補充條件后仍不一定能保證ABC≌△ABC,則補充的這個條件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD,∠A=60°,AB=4,以點B為圓心的扇形與邊CD相切于點E,扇形的圓心角為60°,點E是CD的中點,圖中兩塊陰影部分的面積分別為S1 , S2 , 則S2﹣S1=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】解下列不等式,并把它們的解集分別表示在數軸上.

(1) ≥3(x-1)-4;

(2) ≥1.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】O為直線AB上一點,過點O作射線OC,使∠BOC=65°,將一直角三角形的直角三角板的直角頂點放在點O.

1)如圖1,將三角板MON的一邊ON與射線OB重合,則∠MOC=___________;

2)如圖2,將三角板MON繞點O逆時針旋轉一定角度,此時OC是∠MOB的角平分線,求旋轉角∠BON和∠CON的度數;

3)將三角板MON繞點O逆時針旋轉至圖3時,∠NOC=AOM,求∠NOB的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,B=90°,點EAC的中點,AC=2AB,BAC的平分線ADBC于點D,作AFBC,連接DE并延長交AF于點F,連接FC.

求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系內,雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點,并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結CD,求四邊形OCDB的面積.

查看答案和解析>>

同步練習冊答案