【題目】(7分)如圖,EF//AD, .求證:∠DGA+∠BAC=180°.請將說明過程填寫完成.

證明:∵EF//AD,(已知)

_____(_____________________________).

又∵______

________________________).

∴AB//______(____________________________)

∴∠DGA+∠BAC=180°(_____________________________)

【答案】 兩直線平行,同位角相等 已知 等量代換 DG 內(nèi)錯角相等,兩直線平行 兩直線平行,同旁內(nèi)角互補

【解析】∵EF//AD(已知)

(兩直線平行,同位角相等).

又∵已知

等量代換).

∴AB//DG(內(nèi)錯角相等,兩直線平行)

∴∠DGA+∠BAC=180°(兩直線平行,同旁內(nèi)角互補)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A(31),B(8,5),若用(3,1)(3,3)(53)(5,4)(8,4)(85)表示由AB的一種走法,并規(guī)定從AB只能向上或向右走,請用上述表示法寫出另兩種走法,并判斷這幾種走法的路程是否相等。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中有RtABC,∠A=90°,AB=AC,A-2,0),B0,1),Cd,2).

1)求d的值;

2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應(yīng)點B′、C′正好落在某反比例函數(shù)圖象上. 請求出這個反比例函數(shù)和此時的直線BC′的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是 上一點,且 = ,連接CF并延長交AD的延長線于點E,連接AC,若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為(
A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點,若動點E以1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒(0≤t<6),連接DE,當△BDE是直角三角形時,t的值為( )

A.2
B.2.5或3.5
C.3.5或4.5
D.2或3.5或4.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AD=2,把邊BC繞點B逆時針旋轉(zhuǎn)30°得到線段BP,連接AP并延長交CD于點E,連接PC,則三角形PCE的面積為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,火車站、碼頭分別位于A,B兩點,直線a和b分別表示鐵路與河流.

(1)從火車站到碼頭怎樣走最近,畫圖并說明理由;

(2)從碼頭到鐵路怎樣走最近,畫圖并說明理由;

(3)從火車站到河流怎樣走最近,畫圖并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在⊙O中, = ,弦AB與弦AC交于點A,弦CD與AB交于點F,連接BC.
(1)求證:AC2=ABAF;
(2)若⊙O的半徑長為2cm,∠B=60°,求圖中陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把寬為2cm 的刻度尺在圓O上移動,當刻度尺的一邊EF與圓O相切于A時,另一邊與圓的兩個交點處的度刻恰好為“2”(C點)和“8”(B點)(單位:cm ),則該圓的半徑是(
A.3 cm
B.3.25 cm
C.2 cm
D.4 cm

查看答案和解析>>

同步練習(xí)冊答案