【題目】有一次,小明坐著輪船由A點出發(fā)沿正東方向AN航行,在A點望湖中小島M,測得∠MAN=30°,航行100米到達(dá)B點時,測得∠MBN=45°,你能算出A點與湖中小島M的距離嗎?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知A(,y1),B(2,y2)為反比例函數(shù)y=圖象上的兩點,動點P(x,0)在x軸正半軸上運(yùn)動,當(dāng)線段AP與線段BP之差達(dá)到最大時,點P的坐標(biāo)是( )
A.(,0) B.(1,0) C.(,0) D.(,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四邊形ABCD的周長為32.
(1)求∠BDC的度數(shù);
(2)四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知:點A和點B(如圖1),根據(jù)條件畫圖(用三角板和量角器):
①畫射線BA;
②畫∠ABC=90°,使得點C在線段AB上方且AB=BC;
③連接AC,畫出∠ABC的角平分線BD,交AC于D.通過觀察、度量、猜想獲得線段BD、AC的關(guān)系.
(2)已知:如圖2,∠AOB=150,OC平分∠AOB,AO⊥DO,求∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將口ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
(1)求證:△ABF≌△ECF
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90°,AD∥BC,AE∥CD交BC于E,∠BAE=∠EAC,O是AC的中點,AD=DC=2,下面結(jié)論:①AC=2AB;②AB=;③S△ADC=2S△ABE;④BO⊥AE,其中正確的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AE交CD于點F,交BC的延長線于點E.
(1)求證:BE=CD;
(2)連接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=+1與x軸、y軸分別交于點A、B,以線AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90o、點P(x、y)為線段BC上一個動點(點P不與B、C重合),設(shè)△OPA的面積為S。
(1)求點C的坐標(biāo);
(2)求S關(guān)于x的函數(shù)解析式,并寫出x的的取值范圍;
(3)△OPA的面積能于嗎,如果能,求出此時點P坐標(biāo),如果不能,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com