【題目】探究(1)如圖1,把△ABC沿DE折疊,使點(diǎn)A落在點(diǎn)A’處,請你判斷∠1+∠2與∠A的關(guān)系?直接寫出結(jié)論,不必說明理由.
思考(2)如圖2,BI平分∠ABC,CI平分∠ACB,把△ABC折疊,使點(diǎn)A與點(diǎn)I重合,若∠1+∠2=130°,求∠BIC的度數(shù);
應(yīng)用(3)如圖3,在銳角△ABC中,BF⊥AC于點(diǎn)F,CG⊥AB于點(diǎn)G,BF、CG交于點(diǎn)H,把△ABC折疊使點(diǎn)A和點(diǎn)H重合,試探索∠BHC與∠1+∠2的關(guān)系,并證明你的結(jié)論.
【答案】(1)∠1+∠2=2∠A;(2)∠BIC=122.5°;(3)∠BHC=180°﹣(∠1+∠2),理由見解析.
【解析】試題分析:(1)根據(jù)翻折變換的性質(zhì)以及三角形內(nèi)角和定理以及平角的定義求出即可;
(2)根據(jù)三角形角平分線的性質(zhì)得出∠IBC+∠ICB=90°-∠A,得出∠BIC的度數(shù)即可;
(3)根據(jù)翻折變換的性質(zhì)以及垂線的性質(zhì)得出,∠AFH+∠AGH=90°+90°=180°,進(jìn)而求出∠A=(∠1+∠2),即可得出答案
試題解析:(1)∠1+∠2=2∠A,
理由:根據(jù)翻折的性質(zhì),∠ADE= (180°∠1),∠AED= (180°∠2),
∵∠A+∠ADE+∠AED=180°,
∴∠A+ (180°∠1)+ (180°∠2)=180°,
整理得2∠A=∠1+∠2;
(2)由(1)∠1+∠2=2∠A,得2∠A=130°,
∴∠A=65°
∵IB平分∠ABC,IC平分∠ACB,
∴∠IBC+∠ICB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,
∴∠BIC=180°﹣(∠IBC+∠ICB)=180°﹣(90°﹣∠A)=90°+×65°=122.5°;
(3)∠BHC=180°﹣(∠1+∠2).
理由:∵BF⊥AC,CG⊥AB,
∴∠AFH+∠AGH=90°+90°=180°,∠FHG+∠A=180°,
∴∠BHC=∠FHG=180°﹣∠A,
由(1)知∠1+∠2=2∠A,
∴∠A=(∠1+∠2),
∴∠BHC=180°﹣(∠1+∠
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于a,b的多項(xiàng)式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab項(xiàng),則m=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:某禮品制造工廠接受一批玩具熊的訂貨任務(wù),按計(jì)劃天數(shù)生產(chǎn),如果每天生產(chǎn)20個(gè)玩具熊,則比訂貨任務(wù)少100個(gè);如果每天生產(chǎn)23個(gè)玩具熊,則可以超過訂貨任務(wù)20個(gè).請求出該廠計(jì)劃幾天完成任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過∠AOB的平分線上一點(diǎn)C作CD∥OB交OA于點(diǎn)D,E是線段OC的中點(diǎn),過點(diǎn)E作直線分別交射線CD,OB于點(diǎn)M,N,探究線段OD,ON,DM之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A+∠B=200°,作∠ADC、∠BCD的平分線交于點(diǎn)O1稱為第1次操作,作∠O1DC、∠O1CD的平分線交于點(diǎn)O2稱為第2次操作,作∠O2DC、∠O2CD的平分線交于點(diǎn)O3稱為第3次操作,…,則第5次操作后∠CO5D的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)A、B分別是∠MON的邊OM、ON上兩點(diǎn),OC平分∠MON,在∠CON的內(nèi)部取一點(diǎn)P(點(diǎn)A、P、B三點(diǎn)不在同一直線上),連接PA、PB.
(1)探索∠APB與∠MON、∠PAO、∠PBO之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)設(shè)∠OAP=x°,∠OBP=y°,若∠APB的平分線PQ交OC于點(diǎn)Q,求∠OQP的度數(shù)(用含有x、y的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公園有一個(gè)邊長為4米的正三角形花壇,三角形的頂點(diǎn)A、B、C上各有一棵古樹.現(xiàn)決定把原來的花壇擴(kuò)建成一個(gè)圓形或平行四邊形花壇,要求三棵古樹不能移動(dòng),且三棵古樹位于圓周上或平行四邊形的頂點(diǎn)上.以下設(shè)計(jì)過程中畫圖工具不限.
(1)按圓形設(shè)計(jì),利用圖1畫出你所設(shè)計(jì)的圓形花壇示意圖;
(2)按平行四邊形設(shè)計(jì),利用圖2畫出你所設(shè)計(jì)的平行四邊形花壇示意圖;
(3)若想新建的花壇面積較大,選擇以上哪一種方案合適?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列語句中正確的是( )
A.兩點(diǎn)之間直線的長度叫做這兩點(diǎn)間的距離
B.兩點(diǎn)之間的線段叫做這兩點(diǎn)之間的距離
C.兩點(diǎn)之間線的長度叫做這兩點(diǎn)間的距離
D.兩點(diǎn)之間線段的長度叫做這兩點(diǎn)間的距離
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大型超市從生產(chǎn)基地購進(jìn)一批水果,運(yùn)輸過程中質(zhì)量損失10%,假設(shè)不計(jì)超市其他費(fèi)用,如果超市要想至少獲得20%的利潤,那么這種水果的售價(jià)在進(jìn)價(jià)的基礎(chǔ)上應(yīng)至少提高( )
A. 40% B. 33.4% C. 33.3% D. 30
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com